Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophun Structured version   Visualization version   GIF version

Theorem diophun 36355
Description: If two sets are Diophantine, so is their union. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
diophun ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))

Proof of Theorem diophun
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 36345 . . 3 (𝐴 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
2 nnex 10903 . . . . . 6 ℕ ∈ V
32jctr 563 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ0 ∧ ℕ ∈ V))
4 1z 11284 . . . . . . 7 1 ∈ ℤ
5 nnuz 11599 . . . . . . . 8 ℕ = (ℤ‘1)
65uzinf 12626 . . . . . . 7 (1 ∈ ℤ → ¬ ℕ ∈ Fin)
74, 6ax-mp 5 . . . . . 6 ¬ ℕ ∈ Fin
8 elfznn 12241 . . . . . . 7 (𝑎 ∈ (1...𝑁) → 𝑎 ∈ ℕ)
98ssriv 3572 . . . . . 6 (1...𝑁) ⊆ ℕ
107, 9pm3.2i 470 . . . . 5 (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)
11 eldioph2b 36344 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)}))
12 eldioph2b 36344 . . . . . 6 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐵 ∈ (Dioph‘𝑁) ↔ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}))
1311, 12anbi12d 743 . . . . 5 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)})))
143, 10, 13sylancl 693 . . . 4 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) ↔ (∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)})))
15 reeanv 3086 . . . . 5 (∃𝑎 ∈ (mzPoly‘ℕ)∃𝑐 ∈ (mzPoly‘ℕ)(𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) ↔ (∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}))
16 unab 3853 . . . . . . . . 9 ({𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) = {𝑏 ∣ (∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0))}
17 r19.43 3074 . . . . . . . . . . 11 (∃𝑑 ∈ (ℕ0𝑚 ℕ)((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ (∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)))
18 andi 907 . . . . . . . . . . . . 13 ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0)) ↔ ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)))
19 zex 11263 . . . . . . . . . . . . . . . . . . . 20 ℤ ∈ V
20 nn0ssz 11275 . . . . . . . . . . . . . . . . . . . 20 0 ⊆ ℤ
21 mapss 7786 . . . . . . . . . . . . . . . . . . . 20 ((ℤ ∈ V ∧ ℕ0 ⊆ ℤ) → (ℕ0𝑚 ℕ) ⊆ (ℤ ↑𝑚 ℕ))
2219, 20, 21mp2an 704 . . . . . . . . . . . . . . . . . . 19 (ℕ0𝑚 ℕ) ⊆ (ℤ ↑𝑚 ℕ)
2322sseli 3564 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ (ℕ0𝑚 ℕ) → 𝑑 ∈ (ℤ ↑𝑚 ℕ))
2423adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → 𝑑 ∈ (ℤ ↑𝑚 ℕ))
25 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑑 → (𝑎𝑒) = (𝑎𝑑))
26 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑒 = 𝑑 → (𝑐𝑒) = (𝑐𝑑))
2725, 26oveq12d 6567 . . . . . . . . . . . . . . . . . 18 (𝑒 = 𝑑 → ((𝑎𝑒) · (𝑐𝑒)) = ((𝑎𝑑) · (𝑐𝑑)))
28 eqid 2610 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) = (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))
29 ovex 6577 . . . . . . . . . . . . . . . . . 18 ((𝑎𝑑) · (𝑐𝑑)) ∈ V
3027, 28, 29fvmpt 6191 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (ℤ ↑𝑚 ℕ) → ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = ((𝑎𝑑) · (𝑐𝑑)))
3124, 30syl 17 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = ((𝑎𝑑) · (𝑐𝑑)))
3231eqeq1d 2612 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → (((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0 ↔ ((𝑎𝑑) · (𝑐𝑑)) = 0))
33 simplrl 796 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → 𝑎 ∈ (mzPoly‘ℕ))
34 mzpf 36317 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (mzPoly‘ℕ) → 𝑎:(ℤ ↑𝑚 ℕ)⟶ℤ)
3533, 34syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → 𝑎:(ℤ ↑𝑚 ℕ)⟶ℤ)
3635, 24ffvelrnd 6268 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → (𝑎𝑑) ∈ ℤ)
3736zcnd 11359 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → (𝑎𝑑) ∈ ℂ)
38 simplrr 797 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → 𝑐 ∈ (mzPoly‘ℕ))
39 mzpf 36317 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ (mzPoly‘ℕ) → 𝑐:(ℤ ↑𝑚 ℕ)⟶ℤ)
4038, 39syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → 𝑐:(ℤ ↑𝑚 ℕ)⟶ℤ)
4140, 24ffvelrnd 6268 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → (𝑐𝑑) ∈ ℤ)
4241zcnd 11359 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → (𝑐𝑑) ∈ ℂ)
4337, 42mul0ord 10556 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → (((𝑎𝑑) · (𝑐𝑑)) = 0 ↔ ((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0)))
4432, 43bitr2d 268 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → (((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0) ↔ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0))
4544anbi2d 736 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → ((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑎𝑑) = 0 ∨ (𝑐𝑑) = 0)) ↔ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4618, 45syl5bbr 273 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) ∧ 𝑑 ∈ (ℕ0𝑚 ℕ)) → (((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4746rexbidva 3031 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (∃𝑑 ∈ (ℕ0𝑚 ℕ)((𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ (𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4817, 47syl5bbr 273 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ((∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)) ↔ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)))
4948abbidv 2728 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → {𝑏 ∣ (∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0) ∨ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0))} = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)})
5016, 49syl5eq 2656 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ({𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)})
51 simpl 472 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑁 ∈ ℕ0)
522, 9pm3.2i 470 . . . . . . . . . 10 (ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ)
5352a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ))
54 simprl 790 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎 ∈ (mzPoly‘ℕ))
5554, 34syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎:(ℤ ↑𝑚 ℕ)⟶ℤ)
5655feqmptd 6159 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑎 = (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ (𝑎𝑒)))
5756, 54eqeltrrd 2689 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ (𝑎𝑒)) ∈ (mzPoly‘ℕ))
58 simprr 792 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐 ∈ (mzPoly‘ℕ))
5958, 39syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐:(ℤ ↑𝑚 ℕ)⟶ℤ)
6059feqmptd 6159 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → 𝑐 = (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ (𝑐𝑒)))
6160, 58eqeltrrd 2689 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ (𝑐𝑒)) ∈ (mzPoly‘ℕ))
62 mzpmulmpt 36323 . . . . . . . . . 10 (((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ (𝑎𝑒)) ∈ (mzPoly‘ℕ) ∧ (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ (𝑐𝑒)) ∈ (mzPoly‘ℕ)) → (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) ∈ (mzPoly‘ℕ))
6357, 61, 62syl2anc 691 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) ∈ (mzPoly‘ℕ))
64 eldioph2 36343 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (ℕ ∈ V ∧ (1...𝑁) ⊆ ℕ) ∧ (𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒))) ∈ (mzPoly‘ℕ)) → {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)} ∈ (Dioph‘𝑁))
6551, 53, 63, 64syl3anc 1318 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 ℕ) ↦ ((𝑎𝑒) · (𝑐𝑒)))‘𝑑) = 0)} ∈ (Dioph‘𝑁))
6650, 65eqeltrd 2688 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ({𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) ∈ (Dioph‘𝑁))
67 uneq12 3724 . . . . . . . 8 ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) = ({𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}))
6867eleq1d 2672 . . . . . . 7 ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → ((𝐴𝐵) ∈ (Dioph‘𝑁) ↔ ({𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∪ {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) ∈ (Dioph‘𝑁)))
6966, 68syl5ibrcom 236 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∈ (mzPoly‘ℕ) ∧ 𝑐 ∈ (mzPoly‘ℕ))) → ((𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7069rexlimdvva 3020 . . . . 5 (𝑁 ∈ ℕ0 → (∃𝑎 ∈ (mzPoly‘ℕ)∃𝑐 ∈ (mzPoly‘ℕ)(𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ 𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7115, 70syl5bir 232 . . . 4 (𝑁 ∈ ℕ0 → ((∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑎𝑑) = 0)} ∧ ∃𝑐 ∈ (mzPoly‘ℕ)𝐵 = {𝑏 ∣ ∃𝑑 ∈ (ℕ0𝑚 ℕ)(𝑏 = (𝑑 ↾ (1...𝑁)) ∧ (𝑐𝑑) = 0)}) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7214, 71sylbid 229 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
731, 72syl 17 . 2 (𝐴 ∈ (Dioph‘𝑁) → ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁)))
7473anabsi5 854 1 ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  {cab 2596  wrex 2897  Vcvv 3173  cun 3538  wss 3540  cmpt 4643  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841  0cc0 9815  1c1 9816   · cmul 9820  cn 10897  0cn0 11169  cz 11254  ...cfz 12197  mzPolycmzp 36303  Diophcdioph 36336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-mzpcl 36304  df-mzp 36305  df-dioph 36337
This theorem is referenced by:  orrabdioph  36363
  Copyright terms: Public domain W3C validator