HomeHome Metamath Proof Explorer
Theorem List (p. 364 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 36301-36400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
21.24.7  Miscellanea for polynomials
 
Theoremmptfcl 36301* Interpret range of a maps-to notation as a constraint on the definition. (Contributed by Stefan O'Rear, 10-Oct-2014.)
((𝑡𝐴𝐵):𝐴𝐶 → (𝑡𝐴𝐵𝐶))
 
21.24.8  Multivariate polynomials over the integers
 
Syntaxcmzpcl 36302 Extend class notation to include pre-polynomial rings.
class mzPolyCld
 
Syntaxcmzp 36303 Extend class notation to include polynomial rings.
class mzPoly
 
Definitiondf-mzpcl 36304* Define the polynomially closed function rings over an arbitrary index set 𝑣. The set (mzPolyCld‘𝑣) contains all sets of functions from (ℤ ↑𝑚 𝑣) to which include all constants and projections and are closed under addition and multiplication. This is a "temporary" set used to define the polynomial function ring itself (mzPoly‘𝑣); see df-mzp 36305. (Contributed by Stefan O'Rear, 4-Oct-2014.)
mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑣)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑣 (𝑥 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))})
 
Definitiondf-mzp 36305 Polynomials over with an arbitrary index set, that is, the smallest ring of functions containing all constant functions and all projections. This is almost the most general reasonable definition; to reach full generality, we would need to be able to replace ZZ with an arbitrary (semi-)ring (and a coordinate subring), but rings have not been defined yet. (Contributed by Stefan O'Rear, 4-Oct-2014.)
mzPoly = (𝑣 ∈ V ↦ (mzPolyCld‘𝑣))
 
Theoremmzpclval 36306* Substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.)
(𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))})
 
Theoremelmzpcl 36307* Double substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.)
(𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓𝑓 + 𝑔) ∈ 𝑃 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑃)))))
 
Theoremmzpclall 36308 The set of all functions with the signature of a polynomial is a polynomially closed set. This is a lemma to show that the intersection in df-mzp 36305 is well-defined. (Contributed by Stefan O'Rear, 4-Oct-2014.)
(𝑉 ∈ V → (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∈ (mzPolyCld‘𝑉))
 
Theoremmzpcln0 36309 Corrolary of mzpclall 36308: polynomially closed function sets are not empty. (Contributed by Stefan O'Rear, 4-Oct-2014.)
(𝑉 ∈ V → (mzPolyCld‘𝑉) ≠ ∅)
 
Theoremmzpcl1 36310 Defining property 1 of a polynomially closed function set 𝑃: it contains all constant functions. (Contributed by Stefan O'Rear, 4-Oct-2014.)
((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ((ℤ ↑𝑚 𝑉) × {𝐹}) ∈ 𝑃)
 
Theoremmzpcl2 36311* Defining property 2 of a polynomially closed function set 𝑃: it contains all projections. (Contributed by Stefan O'Rear, 4-Oct-2014.)
((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑉) → (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝐹)) ∈ 𝑃)
 
Theoremmzpcl34 36312 Defining properties 3 and 4 of a polynomially closed function set 𝑃: it is closed under pointwise addition and multiplication. (Contributed by Stefan O'Rear, 4-Oct-2014.)
((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ((𝐹𝑓 + 𝐺) ∈ 𝑃 ∧ (𝐹𝑓 · 𝐺) ∈ 𝑃))
 
Theoremmzpval 36313 Value of the mzPoly function. (Contributed by Stefan O'Rear, 4-Oct-2014.)
(𝑉 ∈ V → (mzPoly‘𝑉) = (mzPolyCld‘𝑉))
 
Theoremdmmzp 36314 mzPoly is defined for all index sets which are sets. This is used with elfvdm 6130 to eliminate sethood antecedents. (Contributed by Stefan O'Rear, 4-Oct-2014.)
dom mzPoly = V
 
Theoremmzpincl 36315 Polynomial closedness is a universal first-order property and passes to intersections. This is where the closure properties of the polynomial ring itself are proved. (Contributed by Stefan O'Rear, 4-Oct-2014.)
(𝑉 ∈ V → (mzPoly‘𝑉) ∈ (mzPolyCld‘𝑉))
 
Theoremmzpconst 36316 Constant functions are polynomial. See also mzpconstmpt 36321. (Contributed by Stefan O'Rear, 4-Oct-2014.)
((𝑉 ∈ V ∧ 𝐶 ∈ ℤ) → ((ℤ ↑𝑚 𝑉) × {𝐶}) ∈ (mzPoly‘𝑉))
 
Theoremmzpf 36317 A polynomial function is a function from the coordinate space to the integers. (Contributed by Stefan O'Rear, 5-Oct-2014.)
(𝐹 ∈ (mzPoly‘𝑉) → 𝐹:(ℤ ↑𝑚 𝑉)⟶ℤ)
 
Theoremmzpproj 36318* A projection function is polynomial. (Contributed by Stefan O'Rear, 4-Oct-2014.)
((𝑉 ∈ V ∧ 𝑋𝑉) → (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑋)) ∈ (mzPoly‘𝑉))
 
Theoremmzpadd 36319 The pointwise sum of two polynomial functions is a polynomial function. See also mzpaddmpt 36322. (Contributed by Stefan O'Rear, 4-Oct-2014.)
((𝐴 ∈ (mzPoly‘𝑉) ∧ 𝐵 ∈ (mzPoly‘𝑉)) → (𝐴𝑓 + 𝐵) ∈ (mzPoly‘𝑉))
 
Theoremmzpmul 36320 The pointwise product of two polynomial functions is a polynomial function. See also mzpmulmpt 36323. (Contributed by Stefan O'Rear, 4-Oct-2014.)
((𝐴 ∈ (mzPoly‘𝑉) ∧ 𝐵 ∈ (mzPoly‘𝑉)) → (𝐴𝑓 · 𝐵) ∈ (mzPoly‘𝑉))
 
Theoremmzpconstmpt 36321* A constant function expressed in maps-to notation is polynomial. This theorem and the several that follow (mzpaddmpt 36322, mzpmulmpt 36323, mzpnegmpt 36325, mzpsubmpt 36324, mzpexpmpt 36326) can be used to build proofs that functions which are "manifestly polynomial", in the sense of being a maps-to containing constants, projections, and simple arithmetic operations, are actually polynomial functions. There is no mzpprojmpt because mzpproj 36318 is already expressed using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014.)
((𝑉 ∈ V ∧ 𝐶 ∈ ℤ) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐶) ∈ (mzPoly‘𝑉))
 
Theoremmzpaddmpt 36322* Sum of polynomial functions is polynomial. Maps-to version of mzpadd 36319. (Contributed by Stefan O'Rear, 5-Oct-2014.)
(((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴 + 𝐵)) ∈ (mzPoly‘𝑉))
 
Theoremmzpmulmpt 36323* Product of polynomial functions is polynomial. Maps-to version of mzpmulmpt 36323. (Contributed by Stefan O'Rear, 5-Oct-2014.)
(((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴 · 𝐵)) ∈ (mzPoly‘𝑉))
 
Theoremmzpsubmpt 36324* The difference of two polynomial functions is polynomial. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐵) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴𝐵)) ∈ (mzPoly‘𝑉))
 
Theoremmzpnegmpt 36325* Negation of a polynomial function. (Contributed by Stefan O'Rear, 11-Oct-2014.)
((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ -𝐴) ∈ (mzPoly‘𝑉))
 
Theoremmzpexpmpt 36326* Raise a polynomial function to a (fixed) exponent. (Contributed by Stefan O'Rear, 5-Oct-2014.)
(((𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉))
 
Theoremmzpindd 36327* "Structural" induction to prove properties of all polynomial functions. (Contributed by Stefan O'Rear, 4-Oct-2014.)
((𝜑𝑓 ∈ ℤ) → 𝜒)    &   ((𝜑𝑓𝑉) → 𝜃)    &   ((𝜑 ∧ (𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂)) → 𝜁)    &   ((𝜑 ∧ (𝑓:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜏) ∧ (𝑔:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝜂)) → 𝜎)    &   (𝑥 = ((ℤ ↑𝑚 𝑉) × {𝑓}) → (𝜓𝜒))    &   (𝑥 = (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) → (𝜓𝜃))    &   (𝑥 = 𝑓 → (𝜓𝜏))    &   (𝑥 = 𝑔 → (𝜓𝜂))    &   (𝑥 = (𝑓𝑓 + 𝑔) → (𝜓𝜁))    &   (𝑥 = (𝑓𝑓 · 𝑔) → (𝜓𝜎))    &   (𝑥 = 𝐴 → (𝜓𝜌))       ((𝜑𝐴 ∈ (mzPoly‘𝑉)) → 𝜌)
 
Theoremmzpmfp 36328 Relationship between multivariate Z-polynomials and general multivariate polynomial functions. (Contributed by Stefan O'Rear, 20-Mar-2015.) (Revised by AV, 13-Jun-2019.)
(mzPoly‘𝐼) = ran (𝐼 eval ℤring)
 
Theoremmzpsubst 36329* Substituting polynomials for the variables of a polynomial results in a polynomial. 𝐺 is expected to depend on 𝑦 and provide the polynomials which are being substituted. (Contributed by Stefan O'Rear, 5-Oct-2014.)
((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
 
Theoremmzprename 36330* Simplified version of mzpsubst 36329 to simply relabel variables in a polynomial. (Contributed by Stefan O'Rear, 5-Oct-2014.)
((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝐹‘(𝑥𝑅))) ∈ (mzPoly‘𝑊))
 
Theoremmzpresrename 36331* A polynomial is a polynomial over all larger index sets. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.)
((𝑊 ∈ V ∧ 𝑉𝑊𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑𝑚 𝑊) ↦ (𝐹‘(𝑥𝑉))) ∈ (mzPoly‘𝑊))
 
Theoremmzpcompact2lem 36332* Lemma for mzpcompact2 36333. (Contributed by Stefan O'Rear, 9-Oct-2014.)
𝐵 ∈ V       (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑𝑚 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
 
Theoremmzpcompact2 36333* Polynomials are finitary objects and can only reference a finite number of variables, even if the index set is infinite. Thus, every polynomial can be expressed as a (uniquely minimal, although we do not prove that) polynomial on a finite number of variables, which is then extended by adding an arbitrary set of ignored variables. (Contributed by Stefan O'Rear, 9-Oct-2014.)
(𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝐵𝐴 = (𝑐 ∈ (ℤ ↑𝑚 𝐵) ↦ (𝑏‘(𝑐𝑎)))))
 
21.24.9  Miscellanea for Diophantine sets 1
 
Theoremcoeq0i 36334 coeq0 5561 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.)
((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (𝐴𝐵) = ∅)
 
Theoremfzsplit1nn0 36335 Split a finite 1-based set of integers in the middle, allowing either end to be empty ((1...0)). (Contributed by Stefan O'Rear, 8-Oct-2014.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝐴𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))
 
21.24.10  Diophantine sets 1: definitions
 
Syntaxcdioph 36336 Extend class notation to include the family of Diophantine sets.
class Dioph
 
Definitiondf-dioph 36337* A Diophantine set is a set of positive integers which is a projection of the zero set of some polynomial. This definition somewhat awkwardly mixes (via mzPoly) and 0 (to define the zero sets); the former could be avoided by considering coincidence sets of 0 polynomials at the cost of requiring two, and the second is driven by consistency with our mu-recursive functions and the requirements of the Davis-Putnam-Robinson-Matiyasevich proof. Both are avoidable at a complexity cost. In particular, it is a consequence of 4sq 15506 that implicitly restricting variables to 0 adds no expressive power over allowing them to range over . While this definition stipulates a specific index set for the polynomials, there is actually flexibility here, see eldioph2b 36344. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Dioph = (𝑛 ∈ ℕ0 ↦ ran (𝑘 ∈ (ℤ𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)}))
 
Theoremeldiophb 36338* Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
(𝐷 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑘 ∈ (ℤ𝑁)∃𝑝 ∈ (mzPoly‘(1...𝑘))𝐷 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
 
Theoremeldioph 36339* Condition for a set to be Diophantine (unpacking existential quantifier). (Contributed by Stefan O'Rear, 5-Oct-2014.)
((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁) ∧ 𝑃 ∈ (mzPoly‘(1...𝐾))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 (1...𝐾))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
 
Theoremdiophrw 36340* Renaming and adding unused witness variables does not change the Diophantine set coded by a polynomial. (Contributed by Stefan O'Rear, 7-Oct-2014.)
((𝑆 ∈ V ∧ 𝑀:𝑇1-1𝑆 ∧ (𝑀𝑂) = ( I ↾ 𝑂)) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0𝑚 𝑆)(𝑎 = (𝑏𝑂) ∧ ((𝑑 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑃‘(𝑑𝑀)))‘𝑏) = 0)} = {𝑎 ∣ ∃𝑐 ∈ (ℕ0𝑚 𝑇)(𝑎 = (𝑐𝑂) ∧ (𝑃𝑐) = 0)})
 
Theoremeldioph2lem1 36341* Lemma for eldioph2 36343. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.)
((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈ (ℤ𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
 
Theoremeldioph2lem2 36342* Lemma for eldioph2 36343. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.)
(((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆𝐴 ∈ (ℤ𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
 
Theoremeldioph2 36343* Construct a Diophantine set from a polynomial with witness variables drawn from any set whatsoever, via mzpcompact2 36333. (Contributed by Stefan O'Rear, 8-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.)
((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
 
Theoremeldioph2b 36344* While Diophantine sets were defined to have a finite number of witness variables consequtively following the observable variables, this is not necessary; they can equivalently be taken to use any witness set (𝑆 ∖ (1...𝑁)). For instance, in diophin 36354 we use this to take the two input sets to have disjoint witness sets. (Contributed by Stefan O'Rear, 8-Oct-2014.)
(((𝑁 ∈ ℕ0𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
 
Theoremeldiophelnn0 36345 Remove antecedent on 𝐵 from Diophantine set constructors. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(𝐴 ∈ (Dioph‘𝐵) → 𝐵 ∈ ℕ0)
 
Theoremeldioph3b 36346* Define Diophantine sets in terms of polynomials with variables indexed by . This avoids a quantifier over the number of witness variables and will be easier to use than eldiophb 36338 in most cases. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(𝐴 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
 
Theoremeldioph3 36347* Inference version of eldioph3b 36346 with quantifier expanded. (Contributed by Stefan O'Rear, 10-Oct-2014.)
((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘ℕ)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
 
21.24.11  Diophantine sets 2 miscellanea
 
Theoremellz1 36348 Membership in a lower set of integers. (Contributed by Stefan O'Rear, 9-Oct-2014.)
(𝐵 ∈ ℤ → (𝐴 ∈ (ℤ ∖ (ℤ‘(𝐵 + 1))) ↔ (𝐴 ∈ ℤ ∧ 𝐴𝐵)))
 
Theoremlzunuz 36349 The union of a lower set of integers and an upper set of integers which abut or overlap is all of the integers. (Contributed by Stefan O'Rear, 9-Oct-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ‘(𝐴 + 1))) ∪ (ℤ𝐵)) = ℤ)
 
Theoremfz1eqin 36350 Express a one-based finite range as the intersection of lower integers with . (Contributed by Stefan O'Rear, 9-Oct-2014.)
(𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))
 
Theoremlzenom 36351 Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(𝑁 ∈ ℤ → (ℤ ∖ (ℤ‘(𝑁 + 1))) ≈ ω)
 
Theoremelmapresaun 36352 fresaun 5988 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
((𝐹 ∈ (𝐶𝑚 𝐴) ∧ 𝐺 ∈ (𝐶𝑚 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) ∈ (𝐶𝑚 (𝐴𝐵)))
 
Theoremelmapresaunres2 36353 fresaunres2 5989 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.)
((𝐹 ∈ (𝐶𝑚 𝐴) ∧ 𝐺 ∈ (𝐶𝑚 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)
 
21.24.12  Diophantine sets 2: union and intersection. Monotone Boolean algebra
 
Theoremdiophin 36354 If two sets are Diophantine, so is their intersection. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))
 
Theoremdiophun 36355 If two sets are Diophantine, so is their union. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴𝐵) ∈ (Dioph‘𝑁))
 
Theoremeldiophss 36356 Diophantine sets are sets of tuples of nonnegative integers. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
(𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0𝑚 (1...𝐵)))
 
21.24.13  Diophantine sets 3: construction
 
Theoremdiophrex 36357* Projecting a Diophantine set by removing a coordinate results in a Diophantine set. (Contributed by Stefan O'Rear, 10-Oct-2014.)
((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑡 ∣ ∃𝑢𝑆 𝑡 = (𝑢 ↾ (1...𝑁))} ∈ (Dioph‘𝑁))
 
Theoremeq0rabdioph 36358* This is the first of a number of theorems which allow sets to be proven Diophantine by syntactic induction, and models the correspondence between Diophantine sets and monotone existential first-order logic. This first theorem shows that the zero set of an implicit polynomial is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.)
((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁))
 
Theoremeqrabdioph 36359* Diophantine set builder for equality of polynomial expressions. Note that the two expressions need not be nonnegative; only variables are so constrained. (Contributed by Stefan O'Rear, 10-Oct-2014.)
((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 = 𝐵} ∈ (Dioph‘𝑁))
 
Theorem0dioph 36360 The null set is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(𝐴 ∈ ℕ0 → ∅ ∈ (Dioph‘𝐴))
 
Theoremvdioph 36361 The "universal" set (as large as possible given eldiophss 36356) is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(𝐴 ∈ ℕ0 → (ℕ0𝑚 (1...𝐴)) ∈ (Dioph‘𝐴))
 
Theoremanrabdioph 36362* Diophantine set builder for conjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(({𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ (𝜑𝜓)} ∈ (Dioph‘𝑁))
 
Theoremorrabdioph 36363* Diophantine set builder for disjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(({𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ (𝜑𝜓)} ∈ (Dioph‘𝑁))
 
Theorem3anrabdioph 36364* Diophantine set builder for ternary conjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(({𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜒} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ (𝜑𝜓𝜒)} ∈ (Dioph‘𝑁))
 
Theorem3orrabdioph 36365* Diophantine set builder for ternary disjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(({𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜒} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ (𝜑𝜓𝜒)} ∈ (Dioph‘𝑁))
 
21.24.14  Diophantine sets 4 miscellanea
 
Theorem2sbcrex 36366* Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.)
([𝐴 / 𝑎][𝐵 / 𝑏]𝑐𝐶 𝜑 ↔ ∃𝑐𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑)
 
TheoremsbcrexgOLD 36367* Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 18-Aug-2018. Use sbcrex 3481 instead. (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝐴 / 𝑥]𝜑))
 
Theorem2sbcrexOLD 36368* Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 6585 instead. (New usage is discouraged.) (Proof modification is discouraged.)
𝐴 ∈ V    &   𝐵 ∈ V       ([𝐴 / 𝑎][𝐵 / 𝑏]𝑐𝐶 𝜑 ↔ ∃𝑐𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑)
 
Theoremsbc2rex 36369* Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.)
([𝐴 / 𝑎]𝑏𝐵𝑐𝐶 𝜑 ↔ ∃𝑏𝐵𝑐𝐶 [𝐴 / 𝑎]𝜑)
 
Theoremsbc2rexgOLD 36370* Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 6585 instead. (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑎]𝑏𝐵𝑐𝐶 𝜑 ↔ ∃𝑏𝐵𝑐𝐶 [𝐴 / 𝑎]𝜑))
 
Theoremsbc4rex 36371* Exchange a substitution with four existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.)
([𝐴 / 𝑎]𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 𝜑 ↔ ∃𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 [𝐴 / 𝑎]𝜑)
 
Theoremsbc4rexgOLD 36372* Exchange a substitution with four existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 6585 instead. (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑎]𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 𝜑 ↔ ∃𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸 [𝐴 / 𝑎]𝜑))
 
Theoremsbcrot3 36373* Rotate a sequence of three explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑[𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑)
 
Theoremsbcrot5 36374* Rotate a sequence of five explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒]𝜑[𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑)
 
Theoremsbccomieg 36375* Commute two explicit substitutions, using an implicit substitution to rewrite the exiting substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
(𝑎 = 𝐴𝐵 = 𝐶)       ([𝐴 / 𝑎][𝐵 / 𝑏]𝜑[𝐶 / 𝑏][𝐴 / 𝑎]𝜑)
 
21.24.15  Diophantine sets 4: Quantification
 
Theoremrexrabdioph 36376* Diophantine set builder for existential quantification. (Contributed by Stefan O'Rear, 10-Oct-2014.)
𝑀 = (𝑁 + 1)    &   (𝑣 = (𝑡𝑀) → (𝜓𝜒))    &   (𝑢 = (𝑡 ↾ (1...𝑁)) → (𝜒𝜑))       ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜓} ∈ (Dioph‘𝑁))
 
Theoremrexfrabdioph 36377* Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
𝑀 = (𝑁 + 1)       ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
 
Theorem2rexfrabdioph 36378* Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
𝑀 = (𝑁 + 1)    &   𝐿 = (𝑀 + 1)       ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
 
Theorem3rexfrabdioph 36379* Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
𝑀 = (𝑁 + 1)    &   𝐿 = (𝑀 + 1)    &   𝐾 = (𝐿 + 1)       ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
 
Theorem4rexfrabdioph 36380* Diophantine set builder for existential quantifier, explicit substitution, four variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
𝑀 = (𝑁 + 1)    &   𝐿 = (𝑀 + 1)    &   𝐾 = (𝐿 + 1)    &   𝐽 = (𝐾 + 1)       ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
 
Theorem6rexfrabdioph 36381* Diophantine set builder for existential quantifier, explicit substitution, six variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
𝑀 = (𝑁 + 1)    &   𝐿 = (𝑀 + 1)    &   𝐾 = (𝐿 + 1)    &   𝐽 = (𝐾 + 1)    &   𝐼 = (𝐽 + 1)    &   𝐻 = (𝐼 + 1)       ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
 
Theorem7rexfrabdioph 36382* Diophantine set builder for existential quantifier, explicit substitution, seven variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
𝑀 = (𝑁 + 1)    &   𝐿 = (𝑀 + 1)    &   𝐾 = (𝐿 + 1)    &   𝐽 = (𝐾 + 1)    &   𝐼 = (𝐽 + 1)    &   𝐻 = (𝐼 + 1)    &   𝐺 = (𝐻 + 1)       ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0𝑚 (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑡𝐽) / 𝑦][(𝑡𝐼) / 𝑧][(𝑡𝐻) / 𝑝][(𝑡𝐺) / 𝑞]𝜑} ∈ (Dioph‘𝐺)) → {𝑢 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0𝑝 ∈ ℕ0𝑞 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
 
21.24.16  Diophantine sets 5: Arithmetic sets
 
Theoremrabdiophlem1 36383* Lemma for arithmetic diophantine sets. Convert polynomial-ness of an expression into a constraint suitable for ralimi 2936. (Contributed by Stefan O'Rear, 10-Oct-2014.)
((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0𝑚 (1...𝑁))𝐴 ∈ ℤ)
 
Theoremrabdiophlem2 36384* Lemma for arithmetic diophantine sets. Reuse a polynomial expression under a new quantifier. (Contributed by Stefan O'Rear, 10-Oct-2014.)
𝑀 = (𝑁 + 1)       ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑀)) ↦ (𝑡 ↾ (1...𝑁)) / 𝑢𝐴) ∈ (mzPoly‘(1...𝑀)))
 
Theoremelnn0rabdioph 36385* Diophantine set builder for nonnegativity constraints. The first builder which uses a witness variable internally; an expression is nonnegative if there is a nonnegative integer equal to it. (Contributed by Stefan O'Rear, 11-Oct-2014.)
((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ0} ∈ (Dioph‘𝑁))
 
Theoremrexzrexnn0 36386* Rewrite a quantification over integers into a quantification over naturals. (Contributed by Stefan O'Rear, 11-Oct-2014.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   (𝑥 = -𝑦 → (𝜑𝜒))       (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓𝜒))
 
Theoremlerabdioph 36387* Diophantine set builder for the less or equals relation. (Contributed by Stefan O'Rear, 11-Oct-2014.)
((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴𝐵} ∈ (Dioph‘𝑁))
 
Theoremeluzrabdioph 36388* Diophantine set builder for membership in a fixed upper set of integers. (Contributed by Stefan O'Rear, 11-Oct-2014.)
((𝑁 ∈ ℕ0𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 ∈ (ℤ𝑀)} ∈ (Dioph‘𝑁))
 
Theoremelnnrabdioph 36389* Diophantine set builder for positivity. (Contributed by Stefan O'Rear, 11-Oct-2014.)
((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ} ∈ (Dioph‘𝑁))
 
Theoremltrabdioph 36390* Diophantine set builder for the strict less than relation. (Contributed by Stefan O'Rear, 11-Oct-2014.)
((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 < 𝐵} ∈ (Dioph‘𝑁))
 
Theoremnerabdioph 36391* Diophantine set builder for inequality. This not quite trivial theorem touches on something important; Diophantine sets are not closed under negation, but they contain an important subclass that is, namely the recursive sets. With this theorem and De Morgan's laws, all quantifier-free formulae can be negated. (Contributed by Stefan O'Rear, 11-Oct-2014.)
((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴𝐵} ∈ (Dioph‘𝑁))
 
Theoremdvdsrabdioph 36392* Divisibility is a Diophantine relation. (Contributed by Stefan O'Rear, 11-Oct-2014.)
((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴𝐵} ∈ (Dioph‘𝑁))
 
21.24.17  Diophantine sets 6: reusability. renumbering of variables
 
Theoremeldioph4b 36393* Membership in Dioph expressed using a quantified union to add witness variables instead of a restriction to remove them. (Contributed by Stefan O'Rear, 16-Oct-2014.)
𝑊 ∈ V    &    ¬ 𝑊 ∈ Fin    &   (𝑊 ∩ ℕ) = ∅       (𝑆 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑝‘(𝑡𝑤)) = 0}))
 
Theoremeldioph4i 36394* Forward-only version of eldioph4b 36393. (Contributed by Stefan O'Rear, 16-Oct-2014.)
𝑊 ∈ V    &    ¬ 𝑊 ∈ Fin    &   (𝑊 ∩ ℕ) = ∅       ((𝑁 ∈ ℕ0𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0𝑚 𝑊)(𝑃‘(𝑡𝑤)) = 0} ∈ (Dioph‘𝑁))
 
Theoremdiophren 36395* Change variables in a Diophantine set, using class notation. This allows already proved Diophantine sets to be reused in contexts with more variables. (Contributed by Stefan O'Rear, 16-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.)
((𝑆 ∈ (Dioph‘𝑁) ∧ 𝑀 ∈ ℕ0𝐹:(1...𝑁)⟶(1...𝑀)) → {𝑎 ∈ (ℕ0𝑚 (1...𝑀)) ∣ (𝑎𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀))
 
Theoremrabrenfdioph 36396* Change variable numbers in a Diophantine class abstraction using explicit substitution. (Contributed by Stefan O'Rear, 17-Oct-2014.)
((𝐵 ∈ ℕ0𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0𝑚 (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0𝑚 (1...𝐵)) ∣ [(𝑏𝐹) / 𝑎]𝜑} ∈ (Dioph‘𝐵))
 
Theoremrabren3dioph 36397* Change variable numbers in a 3-variable Diophantine class abstraction. (Contributed by Stefan O'Rear, 17-Oct-2014.)
(((𝑎‘1) = (𝑏𝑋) ∧ (𝑎‘2) = (𝑏𝑌) ∧ (𝑎‘3) = (𝑏𝑍)) → (𝜑𝜓))    &   𝑋 ∈ (1...𝑁)    &   𝑌 ∈ (1...𝑁)    &   𝑍 ∈ (1...𝑁)       ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁))
 
21.24.18  Pigeonhole Principle and cardinality helpers
 
Theoremfphpd 36398* Pigeonhole principle expressed with implicit substitution. If the range is smaller than the domain, two inputs must be mapped to the same output. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
(𝜑𝐵𝐴)    &   ((𝜑𝑥𝐴) → 𝐶𝐵)    &   (𝑥 = 𝑦𝐶 = 𝐷)       (𝜑 → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝐶 = 𝐷))
 
Theoremfphpdo 36399* Pigeonhole principle for sets of real numbers with implicit output reordering. (Contributed by Stefan O'Rear, 12-Sep-2014.)
(𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐵𝐴)    &   ((𝜑𝑧𝐴) → 𝐶𝐵)    &   (𝑧 = 𝑥𝐶 = 𝐷)    &   (𝑧 = 𝑦𝐶 = 𝐸)       (𝜑 → ∃𝑥𝐴𝑦𝐴 (𝑥 < 𝑦𝐷 = 𝐸))
 
Theoremctbnfien 36400 An infinite subset of a countable set is countable, without using choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
(((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴𝑌)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >