MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit1 Structured version   Visualization version   GIF version

Theorem pwssplit1 18880
Description: Splitting for structure powers, part 1: restriction is an onto function. The only actual monoid law we need here is that the base set is nonempty. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y 𝑌 = (𝑊s 𝑈)
pwssplit1.z 𝑍 = (𝑊s 𝑉)
pwssplit1.b 𝐵 = (Base‘𝑌)
pwssplit1.c 𝐶 = (Base‘𝑍)
pwssplit1.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
pwssplit1 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵onto𝐶)
Distinct variable groups:   𝑥,𝑌   𝑥,𝑊   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwssplit1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.y . . 3 𝑌 = (𝑊s 𝑈)
2 pwssplit1.z . . 3 𝑍 = (𝑊s 𝑉)
3 pwssplit1.b . . 3 𝐵 = (Base‘𝑌)
4 pwssplit1.c . . 3 𝐶 = (Base‘𝑍)
5 pwssplit1.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
61, 2, 3, 4, 5pwssplit0 18879 . 2 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
7 simp1 1054 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑊 ∈ Mnd)
8 simp2 1055 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
9 simp3 1056 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
108, 9ssexd 4733 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
11 eqid 2610 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
122, 11, 4pwselbasb 15971 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑉 ∈ V) → (𝑎𝐶𝑎:𝑉⟶(Base‘𝑊)))
137, 10, 12syl2anc 691 . . . . . . . 8 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → (𝑎𝐶𝑎:𝑉⟶(Base‘𝑊)))
1413biimpa 500 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑎:𝑉⟶(Base‘𝑊))
15 fvex 6113 . . . . . . . . . 10 (0g𝑊) ∈ V
1615fconst 6004 . . . . . . . . 9 ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶{(0g𝑊)}
1716a1i 11 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶{(0g𝑊)})
18 simpl1 1057 . . . . . . . . . 10 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑊 ∈ Mnd)
19 eqid 2610 . . . . . . . . . . 11 (0g𝑊) = (0g𝑊)
2011, 19mndidcl 17131 . . . . . . . . . 10 (𝑊 ∈ Mnd → (0g𝑊) ∈ (Base‘𝑊))
2118, 20syl 17 . . . . . . . . 9 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (0g𝑊) ∈ (Base‘𝑊))
2221snssd 4281 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → {(0g𝑊)} ⊆ (Base‘𝑊))
2317, 22fssd 5970 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶(Base‘𝑊))
24 disjdif 3992 . . . . . . . 8 (𝑉 ∩ (𝑈𝑉)) = ∅
2524a1i 11 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑉 ∩ (𝑈𝑉)) = ∅)
26 fun 5979 . . . . . . 7 (((𝑎:𝑉⟶(Base‘𝑊) ∧ ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶(Base‘𝑊)) ∧ (𝑉 ∩ (𝑈𝑉)) = ∅) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):(𝑉 ∪ (𝑈𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊)))
2714, 23, 25, 26syl21anc 1317 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):(𝑉 ∪ (𝑈𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊)))
28 simpl3 1059 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑉𝑈)
29 undif 4001 . . . . . . . 8 (𝑉𝑈 ↔ (𝑉 ∪ (𝑈𝑉)) = 𝑈)
3028, 29sylib 207 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑉 ∪ (𝑈𝑉)) = 𝑈)
31 unidm 3718 . . . . . . . 8 ((Base‘𝑊) ∪ (Base‘𝑊)) = (Base‘𝑊)
3231a1i 11 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((Base‘𝑊) ∪ (Base‘𝑊)) = (Base‘𝑊))
3330, 32feq23d 5953 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):(𝑉 ∪ (𝑈𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊)) ↔ (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊)))
3427, 33mpbid 221 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊))
35 simpl2 1058 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑈𝑋)
361, 11, 3pwselbasb 15971 . . . . . 6 ((𝑊 ∈ Mnd ∧ 𝑈𝑋) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵 ↔ (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊)))
3718, 35, 36syl2anc 691 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵 ↔ (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊)))
3834, 37mpbird 246 . . . 4 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵)
395fvtresfn 6193 . . . . . 6 ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵 → (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))) = ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉))
4038, 39syl 17 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))) = ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉))
41 resundir 5331 . . . . . . 7 ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉) = ((𝑎𝑉) ∪ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉))
42 ffn 5958 . . . . . . . . 9 (𝑎:𝑉⟶(Base‘𝑊) → 𝑎 Fn 𝑉)
43 fnresdm 5914 . . . . . . . . 9 (𝑎 Fn 𝑉 → (𝑎𝑉) = 𝑎)
4414, 42, 433syl 18 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎𝑉) = 𝑎)
45 incom 3767 . . . . . . . . . 10 ((𝑈𝑉) ∩ 𝑉) = (𝑉 ∩ (𝑈𝑉))
4645, 24eqtri 2632 . . . . . . . . 9 ((𝑈𝑉) ∩ 𝑉) = ∅
47 fnconstg 6006 . . . . . . . . . . 11 ((0g𝑊) ∈ V → ((𝑈𝑉) × {(0g𝑊)}) Fn (𝑈𝑉))
4815, 47ax-mp 5 . . . . . . . . . 10 ((𝑈𝑉) × {(0g𝑊)}) Fn (𝑈𝑉)
49 fnresdisj 5915 . . . . . . . . . 10 (((𝑈𝑉) × {(0g𝑊)}) Fn (𝑈𝑉) → (((𝑈𝑉) ∩ 𝑉) = ∅ ↔ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉) = ∅))
5048, 49mp1i 13 . . . . . . . . 9 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (((𝑈𝑉) ∩ 𝑉) = ∅ ↔ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉) = ∅))
5146, 50mpbii 222 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉) = ∅)
5244, 51uneq12d 3730 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎𝑉) ∪ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉)) = (𝑎 ∪ ∅))
5341, 52syl5eq 2656 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉) = (𝑎 ∪ ∅))
54 un0 3919 . . . . . 6 (𝑎 ∪ ∅) = 𝑎
5553, 54syl6eq 2660 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉) = 𝑎)
5640, 55eqtr2d 2645 . . . 4 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑎 = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))))
57 fveq2 6103 . . . . . 6 (𝑏 = (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) → (𝐹𝑏) = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))))
5857eqeq2d 2620 . . . . 5 (𝑏 = (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) → (𝑎 = (𝐹𝑏) ↔ 𝑎 = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})))))
5958rspcev 3282 . . . 4 (((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵𝑎 = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})))) → ∃𝑏𝐵 𝑎 = (𝐹𝑏))
6038, 56, 59syl2anc 691 . . 3 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ∃𝑏𝐵 𝑎 = (𝐹𝑏))
6160ralrimiva 2949 . 2 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → ∀𝑎𝐶𝑏𝐵 𝑎 = (𝐹𝑏))
62 dffo3 6282 . 2 (𝐹:𝐵onto𝐶 ↔ (𝐹:𝐵𝐶 ∧ ∀𝑎𝐶𝑏𝐵 𝑎 = (𝐹𝑏)))
636, 61, 62sylanbrc 695 1 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125  cmpt 4643   × cxp 5036  cres 5040   Fn wfn 5799  wf 5800  ontowfo 5802  cfv 5804  (class class class)co 6549  Basecbs 15695  0gc0g 15923  s cpws 15930  Mndcmnd 17117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118
This theorem is referenced by:  pwslnmlem2  36681
  Copyright terms: Public domain W3C validator