Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemt Structured version   Visualization version   GIF version

Theorem eulerpartlemt 29760
Description: Lemma for eulerpart 29771. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
Assertion
Ref Expression
eulerpartlemt ((ℕ0𝑚 𝐽) ∩ 𝑅) = ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
Distinct variable groups:   𝑓,𝑚,𝐽   𝑅,𝑚   𝑇,𝑚
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑛,𝑟)

Proof of Theorem eulerpartlemt
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 elmapi 7765 . . . . . . . . . 10 (𝑜 ∈ (ℕ0𝑚 𝐽) → 𝑜:𝐽⟶ℕ0)
21adantr 480 . . . . . . . . 9 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → 𝑜:𝐽⟶ℕ0)
3 c0ex 9913 . . . . . . . . . . 11 0 ∈ V
43fconst 6004 . . . . . . . . . 10 ((ℕ ∖ 𝐽) × {0}):(ℕ ∖ 𝐽)⟶{0}
54a1i 11 . . . . . . . . 9 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → ((ℕ ∖ 𝐽) × {0}):(ℕ ∖ 𝐽)⟶{0})
6 disjdif 3992 . . . . . . . . . 10 (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅
76a1i 11 . . . . . . . . 9 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅)
8 fun 5979 . . . . . . . . 9 (((𝑜:𝐽⟶ℕ0 ∧ ((ℕ ∖ 𝐽) × {0}):(ℕ ∖ 𝐽)⟶{0}) ∧ (𝐽 ∩ (ℕ ∖ 𝐽)) = ∅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪ {0}))
92, 5, 7, 8syl21anc 1317 . . . . . . . 8 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪ {0}))
10 eulerpart.j . . . . . . . . . . 11 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
11 ssrab2 3650 . . . . . . . . . . 11 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ⊆ ℕ
1210, 11eqsstri 3598 . . . . . . . . . 10 𝐽 ⊆ ℕ
13 undif 4001 . . . . . . . . . 10 (𝐽 ⊆ ℕ ↔ (𝐽 ∪ (ℕ ∖ 𝐽)) = ℕ)
1412, 13mpbi 219 . . . . . . . . 9 (𝐽 ∪ (ℕ ∖ 𝐽)) = ℕ
15 0nn0 11184 . . . . . . . . . . 11 0 ∈ ℕ0
16 snssi 4280 . . . . . . . . . . 11 (0 ∈ ℕ0 → {0} ⊆ ℕ0)
1715, 16ax-mp 5 . . . . . . . . . 10 {0} ⊆ ℕ0
18 ssequn2 3748 . . . . . . . . . 10 ({0} ⊆ ℕ0 ↔ (ℕ0 ∪ {0}) = ℕ0)
1917, 18mpbi 219 . . . . . . . . 9 (ℕ0 ∪ {0}) = ℕ0
2014, 19feq23i 5952 . . . . . . . 8 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):(𝐽 ∪ (ℕ ∖ 𝐽))⟶(ℕ0 ∪ {0}) ↔ (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):ℕ⟶ℕ0)
219, 20sylib 207 . . . . . . 7 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):ℕ⟶ℕ0)
22 nn0ex 11175 . . . . . . . 8 0 ∈ V
23 nnex 10903 . . . . . . . 8 ℕ ∈ V
2422, 23elmap 7772 . . . . . . 7 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0𝑚 ℕ) ↔ (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})):ℕ⟶ℕ0)
2521, 24sylibr 223 . . . . . 6 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0𝑚 ℕ))
26 cnvun 5457 . . . . . . . . 9 (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) = (𝑜((ℕ ∖ 𝐽) × {0}))
2726imaeq1i 5382 . . . . . . . 8 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((𝑜((ℕ ∖ 𝐽) × {0})) “ ℕ)
28 imaundir 5465 . . . . . . . 8 ((𝑜((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ))
2927, 28eqtri 2632 . . . . . . 7 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) = ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ))
30 vex 3176 . . . . . . . . . . 11 𝑜 ∈ V
31 cnveq 5218 . . . . . . . . . . . . 13 (𝑓 = 𝑜𝑓 = 𝑜)
3231imaeq1d 5384 . . . . . . . . . . . 12 (𝑓 = 𝑜 → (𝑓 “ ℕ) = (𝑜 “ ℕ))
3332eleq1d 2672 . . . . . . . . . . 11 (𝑓 = 𝑜 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝑜 “ ℕ) ∈ Fin))
34 eulerpart.r . . . . . . . . . . 11 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
3530, 33, 34elab2 3323 . . . . . . . . . 10 (𝑜𝑅 ↔ (𝑜 “ ℕ) ∈ Fin)
3635biimpi 205 . . . . . . . . 9 (𝑜𝑅 → (𝑜 “ ℕ) ∈ Fin)
3736adantl 481 . . . . . . . 8 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → (𝑜 “ ℕ) ∈ Fin)
38 cnvxp 5470 . . . . . . . . . . . . . 14 ((ℕ ∖ 𝐽) × {0}) = ({0} × (ℕ ∖ 𝐽))
3938dmeqi 5247 . . . . . . . . . . . . 13 dom ((ℕ ∖ 𝐽) × {0}) = dom ({0} × (ℕ ∖ 𝐽))
40 2nn 11062 . . . . . . . . . . . . . . 15 2 ∈ ℕ
41 2z 11286 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
42 iddvds 14833 . . . . . . . . . . . . . . . . 17 (2 ∈ ℤ → 2 ∥ 2)
4341, 42ax-mp 5 . . . . . . . . . . . . . . . 16 2 ∥ 2
44 breq2 4587 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 2 → (2 ∥ 𝑧 ↔ 2 ∥ 2))
4544notbid 307 . . . . . . . . . . . . . . . . . 18 (𝑧 = 2 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 2))
4645, 10elrab2 3333 . . . . . . . . . . . . . . . . 17 (2 ∈ 𝐽 ↔ (2 ∈ ℕ ∧ ¬ 2 ∥ 2))
4746simprbi 479 . . . . . . . . . . . . . . . 16 (2 ∈ 𝐽 → ¬ 2 ∥ 2)
4843, 47mt2 190 . . . . . . . . . . . . . . 15 ¬ 2 ∈ 𝐽
49 eldif 3550 . . . . . . . . . . . . . . 15 (2 ∈ (ℕ ∖ 𝐽) ↔ (2 ∈ ℕ ∧ ¬ 2 ∈ 𝐽))
5040, 48, 49mpbir2an 957 . . . . . . . . . . . . . 14 2 ∈ (ℕ ∖ 𝐽)
51 ne0i 3880 . . . . . . . . . . . . . 14 (2 ∈ (ℕ ∖ 𝐽) → (ℕ ∖ 𝐽) ≠ ∅)
52 dmxp 5265 . . . . . . . . . . . . . 14 ((ℕ ∖ 𝐽) ≠ ∅ → dom ({0} × (ℕ ∖ 𝐽)) = {0})
5350, 51, 52mp2b 10 . . . . . . . . . . . . 13 dom ({0} × (ℕ ∖ 𝐽)) = {0}
5439, 53eqtri 2632 . . . . . . . . . . . 12 dom ((ℕ ∖ 𝐽) × {0}) = {0}
5554ineq1i 3772 . . . . . . . . . . 11 (dom ((ℕ ∖ 𝐽) × {0}) ∩ ℕ) = ({0} ∩ ℕ)
56 incom 3767 . . . . . . . . . . 11 (ℕ ∩ {0}) = ({0} ∩ ℕ)
57 0nnn 10929 . . . . . . . . . . . 12 ¬ 0 ∈ ℕ
58 disjsn 4192 . . . . . . . . . . . 12 ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ)
5957, 58mpbir 220 . . . . . . . . . . 11 (ℕ ∩ {0}) = ∅
6055, 56, 593eqtr2i 2638 . . . . . . . . . 10 (dom ((ℕ ∖ 𝐽) × {0}) ∩ ℕ) = ∅
61 imadisj 5403 . . . . . . . . . 10 ((((ℕ ∖ 𝐽) × {0}) “ ℕ) = ∅ ↔ (dom ((ℕ ∖ 𝐽) × {0}) ∩ ℕ) = ∅)
6260, 61mpbir 220 . . . . . . . . 9 (((ℕ ∖ 𝐽) × {0}) “ ℕ) = ∅
63 0fin 8073 . . . . . . . . 9 ∅ ∈ Fin
6462, 63eqeltri 2684 . . . . . . . 8 (((ℕ ∖ 𝐽) × {0}) “ ℕ) ∈ Fin
65 unfi 8112 . . . . . . . 8 (((𝑜 “ ℕ) ∈ Fin ∧ (((ℕ ∖ 𝐽) × {0}) “ ℕ) ∈ Fin) → ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ)) ∈ Fin)
6637, 64, 65sylancl 693 . . . . . . 7 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ)) ∈ Fin)
6729, 66syl5eqel 2692 . . . . . 6 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ∈ Fin)
68 cnvimass 5404 . . . . . . . . 9 (𝑜 “ ℕ) ⊆ dom 𝑜
69 fdm 5964 . . . . . . . . . 10 (𝑜:𝐽⟶ℕ0 → dom 𝑜 = 𝐽)
702, 69syl 17 . . . . . . . . 9 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → dom 𝑜 = 𝐽)
7168, 70syl5sseq 3616 . . . . . . . 8 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → (𝑜 “ ℕ) ⊆ 𝐽)
72 0ss 3924 . . . . . . . . . 10 ∅ ⊆ 𝐽
7362, 72eqsstri 3598 . . . . . . . . 9 (((ℕ ∖ 𝐽) × {0}) “ ℕ) ⊆ 𝐽
7473a1i 11 . . . . . . . 8 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → (((ℕ ∖ 𝐽) × {0}) “ ℕ) ⊆ 𝐽)
7571, 74unssd 3751 . . . . . . 7 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → ((𝑜 “ ℕ) ∪ (((ℕ ∖ 𝐽) × {0}) “ ℕ)) ⊆ 𝐽)
7629, 75syl5eqss 3612 . . . . . 6 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ⊆ 𝐽)
77 eulerpart.p . . . . . . 7 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
78 eulerpart.o . . . . . . 7 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
79 eulerpart.d . . . . . . 7 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
80 eulerpart.f . . . . . . 7 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
81 eulerpart.h . . . . . . 7 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
82 eulerpart.m . . . . . . 7 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
83 eulerpart.t . . . . . . 7 𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
8477, 78, 79, 10, 80, 81, 82, 34, 83eulerpartlemt0 29758 . . . . . 6 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇𝑅) ↔ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (ℕ0𝑚 ℕ) ∧ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ∈ Fin ∧ ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) “ ℕ) ⊆ 𝐽))
8525, 67, 76, 84syl3anbrc 1239 . . . . 5 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇𝑅))
86 resundir 5331 . . . . . 6 ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽) = ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽))
87 ffn 5958 . . . . . . . 8 (𝑜:𝐽⟶ℕ0𝑜 Fn 𝐽)
88 fnresdm 5914 . . . . . . . . 9 (𝑜 Fn 𝐽 → (𝑜𝐽) = 𝑜)
89 incom 3767 . . . . . . . . . . . 12 ((ℕ ∖ 𝐽) ∩ 𝐽) = (𝐽 ∩ (ℕ ∖ 𝐽))
9089, 6eqtri 2632 . . . . . . . . . . 11 ((ℕ ∖ 𝐽) ∩ 𝐽) = ∅
91 fnconstg 6006 . . . . . . . . . . . 12 (0 ∈ ℕ0 → ((ℕ ∖ 𝐽) × {0}) Fn (ℕ ∖ 𝐽))
92 fnresdisj 5915 . . . . . . . . . . . 12 (((ℕ ∖ 𝐽) × {0}) Fn (ℕ ∖ 𝐽) → (((ℕ ∖ 𝐽) ∩ 𝐽) = ∅ ↔ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅))
9315, 91, 92mp2b 10 . . . . . . . . . . 11 (((ℕ ∖ 𝐽) ∩ 𝐽) = ∅ ↔ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅)
9490, 93mpbi 219 . . . . . . . . . 10 (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅
9594a1i 11 . . . . . . . . 9 (𝑜 Fn 𝐽 → (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽) = ∅)
9688, 95uneq12d 3730 . . . . . . . 8 (𝑜 Fn 𝐽 → ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = (𝑜 ∪ ∅))
972, 87, 963syl 18 . . . . . . 7 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = (𝑜 ∪ ∅))
98 un0 3919 . . . . . . 7 (𝑜 ∪ ∅) = 𝑜
9997, 98syl6eq 2660 . . . . . 6 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → ((𝑜𝐽) ∪ (((ℕ ∖ 𝐽) × {0}) ↾ 𝐽)) = 𝑜)
10086, 99syl5req 2657 . . . . 5 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → 𝑜 = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽))
101 reseq1 5311 . . . . . . 7 (𝑚 = (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) → (𝑚𝐽) = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽))
102101eqeq2d 2620 . . . . . 6 (𝑚 = (𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) → (𝑜 = (𝑚𝐽) ↔ 𝑜 = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽)))
103102rspcev 3282 . . . . 5 (((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ∈ (𝑇𝑅) ∧ 𝑜 = ((𝑜 ∪ ((ℕ ∖ 𝐽) × {0})) ↾ 𝐽)) → ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽))
10485, 100, 103syl2anc 691 . . . 4 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) → ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽))
105 simpr 476 . . . . . . 7 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑜 = (𝑚𝐽))
106 simpl 472 . . . . . . . . . . . 12 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑚 ∈ (𝑇𝑅))
10777, 78, 79, 10, 80, 81, 82, 34, 83eulerpartlemt0 29758 . . . . . . . . . . . 12 (𝑚 ∈ (𝑇𝑅) ↔ (𝑚 ∈ (ℕ0𝑚 ℕ) ∧ (𝑚 “ ℕ) ∈ Fin ∧ (𝑚 “ ℕ) ⊆ 𝐽))
108106, 107sylib 207 . . . . . . . . . . 11 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚 ∈ (ℕ0𝑚 ℕ) ∧ (𝑚 “ ℕ) ∈ Fin ∧ (𝑚 “ ℕ) ⊆ 𝐽))
109108simp1d 1066 . . . . . . . . . 10 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑚 ∈ (ℕ0𝑚 ℕ))
11022, 23elmap 7772 . . . . . . . . . 10 (𝑚 ∈ (ℕ0𝑚 ℕ) ↔ 𝑚:ℕ⟶ℕ0)
111109, 110sylib 207 . . . . . . . . 9 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑚:ℕ⟶ℕ0)
112 fssres 5983 . . . . . . . . 9 ((𝑚:ℕ⟶ℕ0𝐽 ⊆ ℕ) → (𝑚𝐽):𝐽⟶ℕ0)
113111, 12, 112sylancl 693 . . . . . . . 8 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚𝐽):𝐽⟶ℕ0)
11410, 23rabex2 4742 . . . . . . . . 9 𝐽 ∈ V
11522, 114elmap 7772 . . . . . . . 8 ((𝑚𝐽) ∈ (ℕ0𝑚 𝐽) ↔ (𝑚𝐽):𝐽⟶ℕ0)
116113, 115sylibr 223 . . . . . . 7 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚𝐽) ∈ (ℕ0𝑚 𝐽))
117105, 116eqeltrd 2688 . . . . . 6 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑜 ∈ (ℕ0𝑚 𝐽))
118 ffun 5961 . . . . . . . . . 10 (𝑚:ℕ⟶ℕ0 → Fun 𝑚)
119 respreima 6252 . . . . . . . . . 10 (Fun 𝑚 → ((𝑚𝐽) “ ℕ) = ((𝑚 “ ℕ) ∩ 𝐽))
120111, 118, 1193syl 18 . . . . . . . . 9 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → ((𝑚𝐽) “ ℕ) = ((𝑚 “ ℕ) ∩ 𝐽))
121108simp2d 1067 . . . . . . . . . 10 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚 “ ℕ) ∈ Fin)
122 infi 8069 . . . . . . . . . 10 ((𝑚 “ ℕ) ∈ Fin → ((𝑚 “ ℕ) ∩ 𝐽) ∈ Fin)
123121, 122syl 17 . . . . . . . . 9 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → ((𝑚 “ ℕ) ∩ 𝐽) ∈ Fin)
124120, 123eqeltrd 2688 . . . . . . . 8 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → ((𝑚𝐽) “ ℕ) ∈ Fin)
125 vex 3176 . . . . . . . . . 10 𝑚 ∈ V
126125resex 5363 . . . . . . . . 9 (𝑚𝐽) ∈ V
127 cnveq 5218 . . . . . . . . . . 11 (𝑓 = (𝑚𝐽) → 𝑓 = (𝑚𝐽))
128127imaeq1d 5384 . . . . . . . . . 10 (𝑓 = (𝑚𝐽) → (𝑓 “ ℕ) = ((𝑚𝐽) “ ℕ))
129128eleq1d 2672 . . . . . . . . 9 (𝑓 = (𝑚𝐽) → ((𝑓 “ ℕ) ∈ Fin ↔ ((𝑚𝐽) “ ℕ) ∈ Fin))
130126, 129, 34elab2 3323 . . . . . . . 8 ((𝑚𝐽) ∈ 𝑅 ↔ ((𝑚𝐽) “ ℕ) ∈ Fin)
131124, 130sylibr 223 . . . . . . 7 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑚𝐽) ∈ 𝑅)
132105, 131eqeltrd 2688 . . . . . 6 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → 𝑜𝑅)
133117, 132jca 553 . . . . 5 ((𝑚 ∈ (𝑇𝑅) ∧ 𝑜 = (𝑚𝐽)) → (𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅))
134133rexlimiva 3010 . . . 4 (∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽) → (𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅))
135104, 134impbii 198 . . 3 ((𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅) ↔ ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽))
136135abbii 2726 . 2 {𝑜 ∣ (𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅)} = {𝑜 ∣ ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽)}
137 df-in 3547 . 2 ((ℕ0𝑚 𝐽) ∩ 𝑅) = {𝑜 ∣ (𝑜 ∈ (ℕ0𝑚 𝐽) ∧ 𝑜𝑅)}
138 eqid 2610 . . 3 (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽)) = (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
139138rnmpt 5292 . 2 ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽)) = {𝑜 ∣ ∃𝑚 ∈ (𝑇𝑅)𝑜 = (𝑚𝐽)}
140136, 137, 1393eqtr4i 2642 1 ((ℕ0𝑚 𝐽) ∩ 𝑅) = ran (𝑚 ∈ (𝑇𝑅) ↦ (𝑚𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  {crab 2900  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  {copab 4642  cmpt 4643   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551   supp csupp 7182  𝑚 cmap 7744  Fincfn 7841  0cc0 9815  1c1 9816   · cmul 9820  cle 9954  cn 10897  2c2 10947  0cn0 11169  cz 11254  cexp 12722  Σcsu 14264  cdvds 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-dvds 14822
This theorem is referenced by:  eulerpartgbij  29761
  Copyright terms: Public domain W3C validator