Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  indir Structured version   Visualization version   GIF version

Theorem indir 3834
 Description: Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
indir ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem indir
StepHypRef Expression
1 indi 3832 . 2 (𝐶 ∩ (𝐴𝐵)) = ((𝐶𝐴) ∪ (𝐶𝐵))
2 incom 3767 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴𝐵))
3 incom 3767 . . 3 (𝐴𝐶) = (𝐶𝐴)
4 incom 3767 . . 3 (𝐵𝐶) = (𝐶𝐵)
53, 4uneq12i 3727 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ((𝐶𝐴) ∪ (𝐶𝐵))
61, 2, 53eqtr4i 2642 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∪ cun 3538   ∩ cin 3539 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-un 3545  df-in 3547 This theorem is referenced by:  difundir  3839  undisj1  3981  disjpr2  4194  disjpr2OLD  4195  resundir  5331  predun  5621  cdaassen  8887  fin23lem26  9030  fpwwe2lem13  9343  neitr  20794  fiuncmp  21017  consuba  21033  trfil2  21501  tsmsres  21757  trust  21843  restmetu  22185  volun  23120  uniioombllem3  23159  itgsplitioo  23410  ppiprm  24677  chtprm  24679  chtdif  24684  ppidif  24689  carsgclctunlem1  29706  ballotlemfp1  29880  ballotlemgun  29913  mrsubvrs  30673  mthmpps  30733  fixun  31186  mbfposadd  32627  iunrelexp0  37013  31prm  40050
 Copyright terms: Public domain W3C validator