Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrn3 Structured version   Visualization version   GIF version

Theorem elrn3 30906
Description: Quantifier-free definition of membership in a range. (Contributed by Scott Fenton, 21-Jan-2017.)
Assertion
Ref Expression
elrn3 (𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅)

Proof of Theorem elrn3
StepHypRef Expression
1 df-rn 5049 . . 3 ran 𝐵 = dom 𝐵
21eleq2i 2680 . 2 (𝐴 ∈ ran 𝐵𝐴 ∈ dom 𝐵)
3 eldm3 30905 . 2 (𝐴 ∈ dom 𝐵 ↔ (𝐵 ↾ {𝐴}) ≠ ∅)
4 cnvxp 5470 . . . . . . 7 (V × {𝐴}) = ({𝐴} × V)
54ineq2i 3773 . . . . . 6 (𝐵(V × {𝐴})) = (𝐵 ∩ ({𝐴} × V))
6 cnvin 5459 . . . . . 6 (𝐵 ∩ (V × {𝐴})) = (𝐵(V × {𝐴}))
7 df-res 5050 . . . . . 6 (𝐵 ↾ {𝐴}) = (𝐵 ∩ ({𝐴} × V))
85, 6, 73eqtr4ri 2643 . . . . 5 (𝐵 ↾ {𝐴}) = (𝐵 ∩ (V × {𝐴}))
98eqeq1i 2615 . . . 4 ((𝐵 ↾ {𝐴}) = ∅ ↔ (𝐵 ∩ (V × {𝐴})) = ∅)
10 inss2 3796 . . . . . 6 (𝐵 ∩ (V × {𝐴})) ⊆ (V × {𝐴})
11 relxp 5150 . . . . . 6 Rel (V × {𝐴})
12 relss 5129 . . . . . 6 ((𝐵 ∩ (V × {𝐴})) ⊆ (V × {𝐴}) → (Rel (V × {𝐴}) → Rel (𝐵 ∩ (V × {𝐴}))))
1310, 11, 12mp2 9 . . . . 5 Rel (𝐵 ∩ (V × {𝐴}))
14 cnveq0 5509 . . . . 5 (Rel (𝐵 ∩ (V × {𝐴})) → ((𝐵 ∩ (V × {𝐴})) = ∅ ↔ (𝐵 ∩ (V × {𝐴})) = ∅))
1513, 14ax-mp 5 . . . 4 ((𝐵 ∩ (V × {𝐴})) = ∅ ↔ (𝐵 ∩ (V × {𝐴})) = ∅)
169, 15bitr4i 266 . . 3 ((𝐵 ↾ {𝐴}) = ∅ ↔ (𝐵 ∩ (V × {𝐴})) = ∅)
1716necon3bii 2834 . 2 ((𝐵 ↾ {𝐴}) ≠ ∅ ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅)
182, 3, 173bitri 285 1 (𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  cin 3539  wss 3540  c0 3874  {csn 4125   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  Rel wrel 5043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator