Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrn3 | Structured version Visualization version GIF version |
Description: Quantifier-free definition of membership in a range. (Contributed by Scott Fenton, 21-Jan-2017.) |
Ref | Expression |
---|---|
elrn3 | ⊢ (𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5049 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
2 | 1 | eleq2i 2680 | . 2 ⊢ (𝐴 ∈ ran 𝐵 ↔ 𝐴 ∈ dom ◡𝐵) |
3 | eldm3 30905 | . 2 ⊢ (𝐴 ∈ dom ◡𝐵 ↔ (◡𝐵 ↾ {𝐴}) ≠ ∅) | |
4 | cnvxp 5470 | . . . . . . 7 ⊢ ◡(V × {𝐴}) = ({𝐴} × V) | |
5 | 4 | ineq2i 3773 | . . . . . 6 ⊢ (◡𝐵 ∩ ◡(V × {𝐴})) = (◡𝐵 ∩ ({𝐴} × V)) |
6 | cnvin 5459 | . . . . . 6 ⊢ ◡(𝐵 ∩ (V × {𝐴})) = (◡𝐵 ∩ ◡(V × {𝐴})) | |
7 | df-res 5050 | . . . . . 6 ⊢ (◡𝐵 ↾ {𝐴}) = (◡𝐵 ∩ ({𝐴} × V)) | |
8 | 5, 6, 7 | 3eqtr4ri 2643 | . . . . 5 ⊢ (◡𝐵 ↾ {𝐴}) = ◡(𝐵 ∩ (V × {𝐴})) |
9 | 8 | eqeq1i 2615 | . . . 4 ⊢ ((◡𝐵 ↾ {𝐴}) = ∅ ↔ ◡(𝐵 ∩ (V × {𝐴})) = ∅) |
10 | inss2 3796 | . . . . . 6 ⊢ (𝐵 ∩ (V × {𝐴})) ⊆ (V × {𝐴}) | |
11 | relxp 5150 | . . . . . 6 ⊢ Rel (V × {𝐴}) | |
12 | relss 5129 | . . . . . 6 ⊢ ((𝐵 ∩ (V × {𝐴})) ⊆ (V × {𝐴}) → (Rel (V × {𝐴}) → Rel (𝐵 ∩ (V × {𝐴})))) | |
13 | 10, 11, 12 | mp2 9 | . . . . 5 ⊢ Rel (𝐵 ∩ (V × {𝐴})) |
14 | cnveq0 5509 | . . . . 5 ⊢ (Rel (𝐵 ∩ (V × {𝐴})) → ((𝐵 ∩ (V × {𝐴})) = ∅ ↔ ◡(𝐵 ∩ (V × {𝐴})) = ∅)) | |
15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ ((𝐵 ∩ (V × {𝐴})) = ∅ ↔ ◡(𝐵 ∩ (V × {𝐴})) = ∅) |
16 | 9, 15 | bitr4i 266 | . . 3 ⊢ ((◡𝐵 ↾ {𝐴}) = ∅ ↔ (𝐵 ∩ (V × {𝐴})) = ∅) |
17 | 16 | necon3bii 2834 | . 2 ⊢ ((◡𝐵 ↾ {𝐴}) ≠ ∅ ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅) |
18 | 2, 3, 17 | 3bitri 285 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 Vcvv 3173 ∩ cin 3539 ⊆ wss 3540 ∅c0 3874 {csn 4125 × cxp 5036 ◡ccnv 5037 dom cdm 5038 ran crn 5039 ↾ cres 5040 Rel wrel 5043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-xp 5044 df-rel 5045 df-cnv 5046 df-dm 5048 df-rn 5049 df-res 5050 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |