Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpssres Structured version   Visualization version   GIF version

Theorem xpssres 5354
 Description: Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
xpssres (𝐶𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵))

Proof of Theorem xpssres
StepHypRef Expression
1 df-res 5050 . . 3 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V))
2 inxp 5176 . . 3 ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴𝐶) × (𝐵 ∩ V))
3 inv1 3922 . . . 4 (𝐵 ∩ V) = 𝐵
43xpeq2i 5060 . . 3 ((𝐴𝐶) × (𝐵 ∩ V)) = ((𝐴𝐶) × 𝐵)
51, 2, 43eqtri 2636 . 2 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴𝐶) × 𝐵)
6 sseqin2 3779 . . . 4 (𝐶𝐴 ↔ (𝐴𝐶) = 𝐶)
76biimpi 205 . . 3 (𝐶𝐴 → (𝐴𝐶) = 𝐶)
87xpeq1d 5062 . 2 (𝐶𝐴 → ((𝐴𝐶) × 𝐵) = (𝐶 × 𝐵))
95, 8syl5eq 2656 1 (𝐶𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540   × cxp 5036   ↾ cres 5040 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-opab 4644  df-xp 5044  df-rel 5045  df-res 5050 This theorem is referenced by:  fparlem3  7166  fparlem4  7167  fpwwe2lem13  9343  pwssplit3  18882  cnconst2  20897  xkoccn  21232  tmdgsum  21709  dvcmul  23513  dvcmulf  23514  dvsconst  37551  dvsid  37552  aacllem  42356
 Copyright terms: Public domain W3C validator