MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resima2OLD Structured version   Visualization version   GIF version

Theorem resima2OLD 5353
Description: Obsolete proof of resima2 5352 as of 25-Aug-2021. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
resima2OLD (𝐵𝐶 → ((𝐴𝐶) “ 𝐵) = (𝐴𝐵))

Proof of Theorem resima2OLD
StepHypRef Expression
1 df-ima 5051 . 2 ((𝐴𝐶) “ 𝐵) = ran ((𝐴𝐶) ↾ 𝐵)
2 resres 5329 . . . 4 ((𝐴𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶𝐵))
32rneqi 5273 . . 3 ran ((𝐴𝐶) ↾ 𝐵) = ran (𝐴 ↾ (𝐶𝐵))
4 df-ss 3554 . . . 4 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐵)
5 incom 3767 . . . . . . . 8 (𝐶𝐵) = (𝐵𝐶)
65a1i 11 . . . . . . 7 ((𝐵𝐶) = 𝐵 → (𝐶𝐵) = (𝐵𝐶))
76reseq2d 5317 . . . . . 6 ((𝐵𝐶) = 𝐵 → (𝐴 ↾ (𝐶𝐵)) = (𝐴 ↾ (𝐵𝐶)))
87rneqd 5274 . . . . 5 ((𝐵𝐶) = 𝐵 → ran (𝐴 ↾ (𝐶𝐵)) = ran (𝐴 ↾ (𝐵𝐶)))
9 reseq2 5312 . . . . . . 7 ((𝐵𝐶) = 𝐵 → (𝐴 ↾ (𝐵𝐶)) = (𝐴𝐵))
109rneqd 5274 . . . . . 6 ((𝐵𝐶) = 𝐵 → ran (𝐴 ↾ (𝐵𝐶)) = ran (𝐴𝐵))
11 df-ima 5051 . . . . . 6 (𝐴𝐵) = ran (𝐴𝐵)
1210, 11syl6eqr 2662 . . . . 5 ((𝐵𝐶) = 𝐵 → ran (𝐴 ↾ (𝐵𝐶)) = (𝐴𝐵))
138, 12eqtrd 2644 . . . 4 ((𝐵𝐶) = 𝐵 → ran (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
144, 13sylbi 206 . . 3 (𝐵𝐶 → ran (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
153, 14syl5eq 2656 . 2 (𝐵𝐶 → ran ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
161, 15syl5eq 2656 1 (𝐵𝐶 → ((𝐴𝐶) “ 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  cin 3539  wss 3540  ran crn 5039  cres 5040  cima 5041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator