MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoccn Structured version   Visualization version   GIF version

Theorem xkoccn 21232
Description: The "constant function" function which maps 𝑥𝑌 to the constant function 𝑧𝑋𝑥 is a continuous function from 𝑋 into the space of continuous functions from 𝑌 to 𝑋. This can also be understood as the currying of the first projection function. (The currying of the second projection function is 𝑥𝑌 ↦ (𝑧𝑋𝑧), which we already know is continuous because it is a constant function.) (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
xkoccn ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆 ^ko 𝑅)))
Distinct variable groups:   𝑥,𝑅   𝑥,𝑆   𝑥,𝑋   𝑥,𝑌

Proof of Theorem xkoccn
Dummy variables 𝑓 𝑘 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnconst2 20897 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
213expa 1257 . . 3 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
3 eqid 2610 . . 3 (𝑥𝑌 ↦ (𝑋 × {𝑥})) = (𝑥𝑌 ↦ (𝑋 × {𝑥}))
42, 3fmptd 6292 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥𝑌 ↦ (𝑋 × {𝑥})):𝑌⟶(𝑅 Cn 𝑆))
5 eqid 2610 . . . . . 6 𝑅 = 𝑅
6 eqid 2610 . . . . . 6 {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp} = {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}
7 eqid 2610 . . . . . 6 (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
85, 6, 7xkobval 21199 . . . . 5 ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = {𝑦 ∣ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})}
98abeq2i 2722 . . . 4 (𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
102adantlr 747 . . . . . . . . . . . . . 14 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
1110adantlr 747 . . . . . . . . . . . . 13 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
1211adantlr 747 . . . . . . . . . . . 12 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
13 simplr 788 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → 𝑘 = ∅)
1413imaeq2d 5385 . . . . . . . . . . . . 13 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = ((𝑋 × {𝑥}) “ ∅))
15 ima0 5400 . . . . . . . . . . . . . 14 ((𝑋 × {𝑥}) “ ∅) = ∅
16 0ss 3924 . . . . . . . . . . . . . 14 ∅ ⊆ 𝑣
1715, 16eqsstri 3598 . . . . . . . . . . . . 13 ((𝑋 × {𝑥}) “ ∅) ⊆ 𝑣
1814, 17syl6eqss 3618 . . . . . . . . . . . 12 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)
19 imaeq1 5380 . . . . . . . . . . . . . 14 (𝑓 = (𝑋 × {𝑥}) → (𝑓𝑘) = ((𝑋 × {𝑥}) “ 𝑘))
2019sseq1d 3595 . . . . . . . . . . . . 13 (𝑓 = (𝑋 × {𝑥}) → ((𝑓𝑘) ⊆ 𝑣 ↔ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣))
2120elrab 3331 . . . . . . . . . . . 12 ((𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣))
2212, 18, 21sylanbrc 695 . . . . . . . . . . 11 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
2322ralrimiva 2949 . . . . . . . . . 10 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → ∀𝑥𝑌 (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
24 rabid2 3096 . . . . . . . . . 10 (𝑌 = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ↔ ∀𝑥𝑌 (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
2523, 24sylibr 223 . . . . . . . . 9 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → 𝑌 = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}})
26 simpllr 795 . . . . . . . . . . 11 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑆 ∈ (TopOn‘𝑌))
27 toponmax 20543 . . . . . . . . . . 11 (𝑆 ∈ (TopOn‘𝑌) → 𝑌𝑆)
2826, 27syl 17 . . . . . . . . . 10 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑌𝑆)
2928adantr 480 . . . . . . . . 9 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → 𝑌𝑆)
3025, 29eqeltrrd 2689 . . . . . . . 8 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ∈ 𝑆)
31 ifnefalse 4048 . . . . . . . . . . . . . . 15 (𝑘 ≠ ∅ → if(𝑘 = ∅, 𝑌, 𝑣) = 𝑣)
3231ad2antlr 759 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → if(𝑘 = ∅, 𝑌, 𝑣) = 𝑣)
3332eleq2d 2673 . . . . . . . . . . . . 13 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ 𝑥𝑣))
34 vex 3176 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
3534snss 4259 . . . . . . . . . . . . . . 15 (𝑥𝑣 ↔ {𝑥} ⊆ 𝑣)
3633, 35syl6bb 275 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ {𝑥} ⊆ 𝑣))
37 df-ima 5051 . . . . . . . . . . . . . . . . 17 ((𝑋 × {𝑥}) “ 𝑘) = ran ((𝑋 × {𝑥}) ↾ 𝑘)
38 simplrl 796 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑘 ∈ 𝒫 𝑅)
3938ad2antrr 758 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → 𝑘 ∈ 𝒫 𝑅)
4039elpwid 4118 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → 𝑘 𝑅)
41 toponuni 20542 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = 𝑅)
4241ad5antr 766 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → 𝑋 = 𝑅)
4340, 42sseqtr4d 3605 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → 𝑘𝑋)
44 xpssres 5354 . . . . . . . . . . . . . . . . . . 19 (𝑘𝑋 → ((𝑋 × {𝑥}) ↾ 𝑘) = (𝑘 × {𝑥}))
4543, 44syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) ↾ 𝑘) = (𝑘 × {𝑥}))
4645rneqd 5274 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ran ((𝑋 × {𝑥}) ↾ 𝑘) = ran (𝑘 × {𝑥}))
4737, 46syl5eq 2656 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = ran (𝑘 × {𝑥}))
48 rnxp 5483 . . . . . . . . . . . . . . . . 17 (𝑘 ≠ ∅ → ran (𝑘 × {𝑥}) = {𝑥})
4948ad2antlr 759 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ran (𝑘 × {𝑥}) = {𝑥})
5047, 49eqtrd 2644 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = {𝑥})
5150sseq1d 3595 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣 ↔ {𝑥} ⊆ 𝑣))
5211adantlr 747 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
5352biantrurd 528 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣 ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)))
5436, 51, 533bitr2d 295 . . . . . . . . . . . . 13 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)))
5533, 54bitr3d 269 . . . . . . . . . . . 12 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥𝑣 ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)))
5655, 21syl6bbr 277 . . . . . . . . . . 11 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥𝑣 ↔ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
5756rabbi2dva 3783 . . . . . . . . . 10 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → (𝑌𝑣) = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}})
58 simplrr 797 . . . . . . . . . . . . 13 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑣𝑆)
59 toponss 20544 . . . . . . . . . . . . 13 ((𝑆 ∈ (TopOn‘𝑌) ∧ 𝑣𝑆) → 𝑣𝑌)
6026, 58, 59syl2anc 691 . . . . . . . . . . . 12 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑣𝑌)
6160adantr 480 . . . . . . . . . . 11 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → 𝑣𝑌)
62 sseqin2 3779 . . . . . . . . . . 11 (𝑣𝑌 ↔ (𝑌𝑣) = 𝑣)
6361, 62sylib 207 . . . . . . . . . 10 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → (𝑌𝑣) = 𝑣)
6457, 63eqtr3d 2646 . . . . . . . . 9 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} = 𝑣)
6558adantr 480 . . . . . . . . 9 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → 𝑣𝑆)
6664, 65eqeltrd 2688 . . . . . . . 8 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ∈ 𝑆)
6730, 66pm2.61dane 2869 . . . . . . 7 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ∈ 𝑆)
68 imaeq2 5381 . . . . . . . . 9 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) = ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
693mptpreima 5545 . . . . . . . . 9 ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}}
7068, 69syl6eq 2660 . . . . . . . 8 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}})
7170eleq1d 2672 . . . . . . 7 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} → (((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆 ↔ {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ∈ 𝑆))
7267, 71syl5ibrcom 236 . . . . . 6 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))
7372expimpd 627 . . . . 5 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) → (((𝑅t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))
7473rexlimdvva 3020 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (∃𝑘 ∈ 𝒫 𝑅𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))
759, 74syl5bi 231 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))
7675ralrimiv 2948 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∀𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆)
77 simpr 476 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑆 ∈ (TopOn‘𝑌))
78 ovex 6577 . . . . . 6 (𝑅 Cn 𝑆) ∈ V
7978pwex 4774 . . . . 5 𝒫 (𝑅 Cn 𝑆) ∈ V
805, 6, 7xkotf 21198 . . . . . 6 (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)
81 frn 5966 . . . . . 6 ((𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) → ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆))
8280, 81ax-mp 5 . . . . 5 ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆)
8379, 82ssexi 4731 . . . 4 ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V
8483a1i 11 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V)
85 topontop 20541 . . . 4 (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top)
86 topontop 20541 . . . 4 (𝑆 ∈ (TopOn‘𝑌) → 𝑆 ∈ Top)
875, 6, 7xkoval 21200 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
8885, 86, 87syl2an 493 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑆 ^ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
89 eqid 2610 . . . . 5 (𝑆 ^ko 𝑅) = (𝑆 ^ko 𝑅)
9089xkotopon 21213 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
9185, 86, 90syl2an 493 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑆 ^ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
9277, 84, 88, 91subbascn 20868 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆 ^ko 𝑅)) ↔ ((𝑥𝑌 ↦ (𝑋 × {𝑥})):𝑌⟶(𝑅 Cn 𝑆) ∧ ∀𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆)))
934, 76, 92mpbir2and 959 1 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆 ^ko 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cin 3539  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108  {csn 4125   cuni 4372  cmpt 4643   × cxp 5036  ccnv 5037  ran crn 5039  cres 5040  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  ficfi 8199  t crest 15904  topGenctg 15921  Topctop 20517  TopOnctopon 20518   Cn ccn 20838  Compccmp 20999   ^ko cxko 21174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-fin 7845  df-fi 8200  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841  df-cnp 20842  df-cmp 21000  df-xko 21176
This theorem is referenced by:  cnmptkc  21292  xkofvcn  21297
  Copyright terms: Public domain W3C validator