MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoccn Structured version   Unicode version

Theorem xkoccn 19034
Description: The "constant function" function which maps 
x  e.  Y to the constant function  z  e.  X  |->  x is a continuous function from  X into the space of continuous functions from  Y to  X. This can also be understood as the currying of the first projection function. (The currying of the second projection function is  x  e.  Y  |->  ( z  e.  X  |->  z ), which we already know is continuous because it is a constant function.) (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
xkoccn  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( x  e.  Y  |->  ( X  X.  { x }
) )  e.  ( S  Cn  ( S  ^ko  R ) ) )
Distinct variable groups:    x, R    x, S    x, X    x, Y

Proof of Theorem xkoccn
Dummy variables  f 
k  v  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnconst2 18729 . . . 4  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )  /\  x  e.  Y
)  ->  ( X  X.  { x } )  e.  ( R  Cn  S ) )
213expa 1180 . . 3  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  x  e.  Y )  ->  ( X  X.  { x }
)  e.  ( R  Cn  S ) )
3 eqid 2433 . . 3  |-  ( x  e.  Y  |->  ( X  X.  { x }
) )  =  ( x  e.  Y  |->  ( X  X.  { x } ) )
42, 3fmptd 5855 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( x  e.  Y  |->  ( X  X.  { x }
) ) : Y --> ( R  Cn  S
) )
5 eqid 2433 . . . . . 6  |-  U. R  =  U. R
6 eqid 2433 . . . . . 6  |-  { z  e.  ~P U. R  |  ( Rt  z )  e.  Comp }  =  {
z  e.  ~P U. R  |  ( Rt  z
)  e.  Comp }
7 eqid 2433 . . . . . 6  |-  ( k  e.  { z  e. 
~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  =  ( k  e.  { z  e.  ~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } )
85, 6, 7xkobval 19001 . . . . 5  |-  ran  (
k  e.  { z  e.  ~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } )  =  { y  |  E. k  e.  ~P  U. R E. v  e.  S  ( ( Rt  k )  e.  Comp  /\  y  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) }
98abeq2i 2540 . . . 4  |-  ( y  e.  ran  ( k  e.  { z  e. 
~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  <->  E. k  e.  ~P  U. R E. v  e.  S  (
( Rt  k )  e. 
Comp  /\  y  =  {
f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) )
102adantlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e.  ~P U. R  /\  v  e.  S ) )  /\  x  e.  Y )  ->  ( X  X.  {
x } )  e.  ( R  Cn  S
) )
1110adantlr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  x  e.  Y )  ->  ( X  X.  { x }
)  e.  ( R  Cn  S ) )
1211adantlr 707 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =  (/) )  /\  x  e.  Y )  ->  ( X  X.  {
x } )  e.  ( R  Cn  S
) )
13 simplr 747 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =  (/) )  /\  x  e.  Y )  ->  k  =  (/) )
1413imaeq2d 5157 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =  (/) )  /\  x  e.  Y )  ->  ( ( X  X.  { x } )
" k )  =  ( ( X  X.  { x } )
" (/) ) )
15 ima0 5172 . . . . . . . . . . . . . 14  |-  ( ( X  X.  { x } ) " (/) )  =  (/)
16 0ss 3654 . . . . . . . . . . . . . 14  |-  (/)  C_  v
1715, 16eqsstri 3374 . . . . . . . . . . . . 13  |-  ( ( X  X.  { x } ) " (/) )  C_  v
1814, 17syl6eqss 3394 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =  (/) )  /\  x  e.  Y )  ->  ( ( X  X.  { x } )
" k )  C_  v )
19 imaeq1 5152 . . . . . . . . . . . . . 14  |-  ( f  =  ( X  X.  { x } )  ->  ( f "
k )  =  ( ( X  X.  {
x } ) "
k ) )
2019sseq1d 3371 . . . . . . . . . . . . 13  |-  ( f  =  ( X  X.  { x } )  ->  ( ( f
" k )  C_  v 
<->  ( ( X  X.  { x } )
" k )  C_  v ) )
2120elrab 3106 . . . . . . . . . . . 12  |-  ( ( X  X.  { x } )  e.  {
f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }  <->  ( ( X  X.  {
x } )  e.  ( R  Cn  S
)  /\  ( ( X  X.  { x }
) " k ) 
C_  v ) )
2212, 18, 21sylanbrc 657 . . . . . . . . . . 11  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =  (/) )  /\  x  e.  Y )  ->  ( X  X.  {
x } )  e. 
{ f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )
2322ralrimiva 2789 . . . . . . . . . 10  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =  (/) )  ->  A. x  e.  Y  ( X  X.  { x } )  e.  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v } )
24 rabid2 2888 . . . . . . . . . 10  |-  ( Y  =  { x  e.  Y  |  ( X  X.  { x }
)  e.  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } }  <->  A. x  e.  Y  ( X  X.  { x } )  e.  {
f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)
2523, 24sylibr 212 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =  (/) )  ->  Y  =  { x  e.  Y  |  ( X  X.  { x } )  e.  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v } } )
26 simpllr 751 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e.  ~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  ->  S  e.  (TopOn `  Y )
)
27 toponmax 18375 . . . . . . . . . . 11  |-  ( S  e.  (TopOn `  Y
)  ->  Y  e.  S )
2826, 27syl 16 . . . . . . . . . 10  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e.  ~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  ->  Y  e.  S )
2928adantr 462 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =  (/) )  ->  Y  e.  S )
3025, 29eqeltrrd 2508 . . . . . . . 8  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =  (/) )  ->  { x  e.  Y  |  ( X  X.  { x }
)  e.  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } }  e.  S )
31 ifnefalse 3789 . . . . . . . . . . . . . . 15  |-  ( k  =/=  (/)  ->  if (
k  =  (/) ,  Y ,  v )  =  v )
3231ad2antlr 719 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  if ( k  =  (/) ,  Y ,  v )  =  v )
3332eleq2d 2500 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( x  e.  if ( k  =  (/) ,  Y ,  v )  <-> 
x  e.  v ) )
34 vex 2965 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
3534snss 3987 . . . . . . . . . . . . . . 15  |-  ( x  e.  v  <->  { x }  C_  v )
3633, 35syl6bb 261 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( x  e.  if ( k  =  (/) ,  Y ,  v )  <->  { x }  C_  v ) )
37 df-ima 4840 . . . . . . . . . . . . . . . . 17  |-  ( ( X  X.  { x } ) " k
)  =  ran  (
( X  X.  {
x } )  |`  k )
38 simplrl 752 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e.  ~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  ->  k  e.  ~P U. R )
3938ad2antrr 718 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  k  e.  ~P U. R )
4039elpwid 3858 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  k  C_  U. R )
41 toponuni 18374 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  e.  (TopOn `  X
)  ->  X  =  U. R )
4241ad5antr 726 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  X  =  U. R
)
4340, 42sseqtr4d 3381 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  k  C_  X )
44 xpssres 5132 . . . . . . . . . . . . . . . . . . 19  |-  ( k 
C_  X  ->  (
( X  X.  {
x } )  |`  k )  =  ( k  X.  { x } ) )
4543, 44syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( ( X  X.  { x } )  |`  k )  =  ( k  X.  { x } ) )
4645rneqd 5054 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ran  ( ( X  X.  { x }
)  |`  k )  =  ran  ( k  X. 
{ x } ) )
4737, 46syl5eq 2477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( ( X  X.  { x } )
" k )  =  ran  ( k  X. 
{ x } ) )
48 rnxp 5256 . . . . . . . . . . . . . . . . 17  |-  ( k  =/=  (/)  ->  ran  ( k  X.  { x }
)  =  { x } )
4948ad2antlr 719 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ran  ( k  X. 
{ x } )  =  { x }
)
5047, 49eqtrd 2465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( ( X  X.  { x } )
" k )  =  { x } )
5150sseq1d 3371 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( ( ( X  X.  { x }
) " k ) 
C_  v  <->  { x }  C_  v ) )
5211adantlr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( X  X.  {
x } )  e.  ( R  Cn  S
) )
5352biantrurd 505 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( ( ( X  X.  { x }
) " k ) 
C_  v  <->  ( ( X  X.  { x }
)  e.  ( R  Cn  S )  /\  ( ( X  X.  { x } )
" k )  C_  v ) ) )
5436, 51, 533bitr2d 281 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( x  e.  if ( k  =  (/) ,  Y ,  v )  <-> 
( ( X  X.  { x } )  e.  ( R  Cn  S )  /\  (
( X  X.  {
x } ) "
k )  C_  v
) ) )
5533, 54bitr3d 255 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( x  e.  v  <-> 
( ( X  X.  { x } )  e.  ( R  Cn  S )  /\  (
( X  X.  {
x } ) "
k )  C_  v
) ) )
5655, 21syl6bbr 263 . . . . . . . . . . 11  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( x  e.  v  <-> 
( X  X.  {
x } )  e. 
{ f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) )
5756rabbi2dva 3546 . . . . . . . . . 10  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =/=  (/) )  ->  ( Y  i^i  v )  =  { x  e.  Y  |  ( X  X.  { x } )  e.  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v } } )
58 simplrr 753 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e.  ~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  ->  v  e.  S )
59 toponss 18376 . . . . . . . . . . . . 13  |-  ( ( S  e.  (TopOn `  Y )  /\  v  e.  S )  ->  v  C_  Y )
6026, 58, 59syl2anc 654 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e.  ~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  ->  v  C_  Y )
6160adantr 462 . . . . . . . . . . 11  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =/=  (/) )  ->  v  C_  Y )
62 dfss1 3543 . . . . . . . . . . 11  |-  ( v 
C_  Y  <->  ( Y  i^i  v )  =  v )
6361, 62sylib 196 . . . . . . . . . 10  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =/=  (/) )  ->  ( Y  i^i  v )  =  v )
6457, 63eqtr3d 2467 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =/=  (/) )  ->  { x  e.  Y  |  ( X  X.  { x }
)  e.  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } }  =  v )
6558adantr 462 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =/=  (/) )  ->  v  e.  S )
6664, 65eqeltrd 2507 . . . . . . . 8  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =/=  (/) )  ->  { x  e.  Y  |  ( X  X.  { x }
)  e.  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } }  e.  S )
6730, 66pm2.61dane 2679 . . . . . . 7  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e.  ~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  ->  { x  e.  Y  |  ( X  X.  { x }
)  e.  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } }  e.  S )
68 imaeq2 5153 . . . . . . . . 9  |-  ( y  =  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v }  ->  ( `' ( x  e.  Y  |->  ( X  X.  {
x } ) )
" y )  =  ( `' ( x  e.  Y  |->  ( X  X.  { x }
) ) " {
f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) )
693mptpreima 5319 . . . . . . . . 9  |-  ( `' ( x  e.  Y  |->  ( X  X.  {
x } ) )
" { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v } )  =  {
x  e.  Y  | 
( X  X.  {
x } )  e. 
{ f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } }
7068, 69syl6eq 2481 . . . . . . . 8  |-  ( y  =  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v }  ->  ( `' ( x  e.  Y  |->  ( X  X.  {
x } ) )
" y )  =  { x  e.  Y  |  ( X  X.  { x } )  e.  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v } } )
7170eleq1d 2499 . . . . . . 7  |-  ( y  =  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v }  ->  ( ( `' ( x  e.  Y  |->  ( X  X.  { x } ) ) " y )  e.  S  <->  { x  e.  Y  |  ( X  X.  { x }
)  e.  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } }  e.  S ) )
7267, 71syl5ibrcom 222 . . . . . 6  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e.  ~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  ->  (
y  =  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v }  ->  ( `' ( x  e.  Y  |->  ( X  X.  { x } ) ) " y )  e.  S ) )
7372expimpd 598 . . . . 5  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  ->  ( (
( Rt  k )  e. 
Comp  /\  y  =  {
f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)  ->  ( `' ( x  e.  Y  |->  ( X  X.  {
x } ) )
" y )  e.  S ) )
7473rexlimdvva 2838 . . . 4  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( E. k  e.  ~P  U. R E. v  e.  S  ( ( Rt  k )  e.  Comp  /\  y  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  ->  ( `' ( x  e.  Y  |->  ( X  X.  { x } ) ) " y )  e.  S ) )
759, 74syl5bi 217 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( y  e.  ran  ( k  e. 
{ z  e.  ~P U. R  |  ( Rt  z )  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)  ->  ( `' ( x  e.  Y  |->  ( X  X.  {
x } ) )
" y )  e.  S ) )
7675ralrimiv 2788 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  A. y  e.  ran  ( k  e. 
{ z  e.  ~P U. R  |  ( Rt  z )  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) ( `' ( x  e.  Y  |->  ( X  X.  { x } ) ) "
y )  e.  S
)
77 simpr 458 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  S  e.  (TopOn `  Y ) )
78 ovex 6105 . . . . . 6  |-  ( R  Cn  S )  e. 
_V
7978pwex 4463 . . . . 5  |-  ~P ( R  Cn  S )  e. 
_V
805, 6, 7xkotf 19000 . . . . . 6  |-  ( k  e.  { z  e. 
~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) : ( { z  e.  ~P U. R  |  ( Rt  z )  e.  Comp }  X.  S ) --> ~P ( R  Cn  S )
81 frn 5553 . . . . . 6  |-  ( ( k  e.  { z  e.  ~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } ) : ( { z  e.  ~P U. R  |  ( Rt  z )  e.  Comp }  X.  S
) --> ~P ( R  Cn  S )  ->  ran  ( k  e.  {
z  e.  ~P U. R  |  ( Rt  z
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)  C_  ~P ( R  Cn  S ) )
8280, 81ax-mp 5 . . . . 5  |-  ran  (
k  e.  { z  e.  ~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } ) 
C_  ~P ( R  Cn  S )
8379, 82ssexi 4425 . . . 4  |-  ran  (
k  e.  { z  e.  ~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } )  e.  _V
8483a1i 11 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ran  ( k  e.  { z  e. 
~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  e.  _V )
85 topontop 18373 . . . 4  |-  ( R  e.  (TopOn `  X
)  ->  R  e.  Top )
86 topontop 18373 . . . 4  |-  ( S  e.  (TopOn `  Y
)  ->  S  e.  Top )
875, 6, 7xkoval 19002 . . . 4  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( S  ^ko  R )  =  (
topGen `  ( fi `  ran  ( k  e.  {
z  e.  ~P U. R  |  ( Rt  z
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) ) ) )
8885, 86, 87syl2an 474 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( S  ^ko  R )  =  ( topGen `  ( fi `  ran  ( k  e.  {
z  e.  ~P U. R  |  ( Rt  z
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) ) ) )
89 eqid 2433 . . . . 5  |-  ( S  ^ko  R )  =  ( S  ^ko  R )
9089xkotopon 19015 . . . 4  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( S  ^ko  R )  e.  (TopOn `  ( R  Cn  S
) ) )
9185, 86, 90syl2an 474 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( S  ^ko  R )  e.  (TopOn `  ( R  Cn  S
) ) )
9277, 84, 88, 91subbascn 18700 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( (
x  e.  Y  |->  ( X  X.  { x } ) )  e.  ( S  Cn  ( S  ^ko  R ) )  <->  ( (
x  e.  Y  |->  ( X  X.  { x } ) ) : Y --> ( R  Cn  S )  /\  A. y  e.  ran  ( k  e.  { z  e. 
~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) ( `' ( x  e.  Y  |->  ( X  X.  {
x } ) )
" y )  e.  S ) ) )
934, 76, 92mpbir2and 906 1  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( x  e.  Y  |->  ( X  X.  { x }
) )  e.  ( S  Cn  ( S  ^ko  R ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755    =/= wne 2596   A.wral 2705   E.wrex 2706   {crab 2709   _Vcvv 2962    i^i cin 3315    C_ wss 3316   (/)c0 3625   ifcif 3779   ~Pcpw 3848   {csn 3865   U.cuni 4079    e. cmpt 4338    X. cxp 4825   `'ccnv 4826   ran crn 4828    |` cres 4829   "cima 4830   -->wf 5402   ` cfv 5406  (class class class)co 6080    e. cmpt2 6082   ficfi 7648   ↾t crest 14342   topGenctg 14359   Topctop 18340  TopOnctopon 18341    Cn ccn 18670   Compccmp 18831    ^ko cxko 18976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-en 7299  df-dom 7300  df-fin 7302  df-fi 7649  df-rest 14344  df-topgen 14365  df-top 18345  df-bases 18347  df-topon 18348  df-cn 18673  df-cnp 18674  df-cmp 18832  df-xko 18978
This theorem is referenced by:  cnmptkc  19094  xkofvcn  19099
  Copyright terms: Public domain W3C validator