MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoccn Structured version   Visualization version   Unicode version

Theorem xkoccn 20634
Description: The "constant function" function which maps 
x  e.  Y to the constant function  z  e.  X  |->  x is a continuous function from  X into the space of continuous functions from  Y to  X. This can also be understood as the currying of the first projection function. (The currying of the second projection function is  x  e.  Y  |->  ( z  e.  X  |->  z ), which we already know is continuous because it is a constant function.) (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
xkoccn  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( x  e.  Y  |->  ( X  X.  { x }
) )  e.  ( S  Cn  ( S  ^ko  R ) ) )
Distinct variable groups:    x, R    x, S    x, X    x, Y

Proof of Theorem xkoccn
Dummy variables  f 
k  v  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnconst2 20299 . . . 4  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )  /\  x  e.  Y
)  ->  ( X  X.  { x } )  e.  ( R  Cn  S ) )
213expa 1208 . . 3  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  x  e.  Y )  ->  ( X  X.  { x }
)  e.  ( R  Cn  S ) )
3 eqid 2451 . . 3  |-  ( x  e.  Y  |->  ( X  X.  { x }
) )  =  ( x  e.  Y  |->  ( X  X.  { x } ) )
42, 3fmptd 6046 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( x  e.  Y  |->  ( X  X.  { x }
) ) : Y --> ( R  Cn  S
) )
5 eqid 2451 . . . . . 6  |-  U. R  =  U. R
6 eqid 2451 . . . . . 6  |-  { z  e.  ~P U. R  |  ( Rt  z )  e.  Comp }  =  {
z  e.  ~P U. R  |  ( Rt  z
)  e.  Comp }
7 eqid 2451 . . . . . 6  |-  ( k  e.  { z  e. 
~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  =  ( k  e.  { z  e.  ~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } )
85, 6, 7xkobval 20601 . . . . 5  |-  ran  (
k  e.  { z  e.  ~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } )  =  { y  |  E. k  e.  ~P  U. R E. v  e.  S  ( ( Rt  k )  e.  Comp  /\  y  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) }
98abeq2i 2563 . . . 4  |-  ( y  e.  ran  ( k  e.  { z  e. 
~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  <->  E. k  e.  ~P  U. R E. v  e.  S  (
( Rt  k )  e. 
Comp  /\  y  =  {
f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) )
102adantlr 721 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e.  ~P U. R  /\  v  e.  S ) )  /\  x  e.  Y )  ->  ( X  X.  {
x } )  e.  ( R  Cn  S
) )
1110adantlr 721 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  x  e.  Y )  ->  ( X  X.  { x }
)  e.  ( R  Cn  S ) )
1211adantlr 721 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =  (/) )  /\  x  e.  Y )  ->  ( X  X.  {
x } )  e.  ( R  Cn  S
) )
13 simplr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =  (/) )  /\  x  e.  Y )  ->  k  =  (/) )
1413imaeq2d 5168 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =  (/) )  /\  x  e.  Y )  ->  ( ( X  X.  { x } )
" k )  =  ( ( X  X.  { x } )
" (/) ) )
15 ima0 5183 . . . . . . . . . . . . . 14  |-  ( ( X  X.  { x } ) " (/) )  =  (/)
16 0ss 3763 . . . . . . . . . . . . . 14  |-  (/)  C_  v
1715, 16eqsstri 3462 . . . . . . . . . . . . 13  |-  ( ( X  X.  { x } ) " (/) )  C_  v
1814, 17syl6eqss 3482 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =  (/) )  /\  x  e.  Y )  ->  ( ( X  X.  { x } )
" k )  C_  v )
19 imaeq1 5163 . . . . . . . . . . . . . 14  |-  ( f  =  ( X  X.  { x } )  ->  ( f "
k )  =  ( ( X  X.  {
x } ) "
k ) )
2019sseq1d 3459 . . . . . . . . . . . . 13  |-  ( f  =  ( X  X.  { x } )  ->  ( ( f
" k )  C_  v 
<->  ( ( X  X.  { x } )
" k )  C_  v ) )
2120elrab 3196 . . . . . . . . . . . 12  |-  ( ( X  X.  { x } )  e.  {
f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }  <->  ( ( X  X.  {
x } )  e.  ( R  Cn  S
)  /\  ( ( X  X.  { x }
) " k ) 
C_  v ) )
2212, 18, 21sylanbrc 670 . . . . . . . . . . 11  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =  (/) )  /\  x  e.  Y )  ->  ( X  X.  {
x } )  e. 
{ f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )
2322ralrimiva 2802 . . . . . . . . . 10  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =  (/) )  ->  A. x  e.  Y  ( X  X.  { x } )  e.  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v } )
24 rabid2 2968 . . . . . . . . . 10  |-  ( Y  =  { x  e.  Y  |  ( X  X.  { x }
)  e.  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } }  <->  A. x  e.  Y  ( X  X.  { x } )  e.  {
f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)
2523, 24sylibr 216 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =  (/) )  ->  Y  =  { x  e.  Y  |  ( X  X.  { x } )  e.  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v } } )
26 simpllr 769 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e.  ~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  ->  S  e.  (TopOn `  Y )
)
27 toponmax 19943 . . . . . . . . . . 11  |-  ( S  e.  (TopOn `  Y
)  ->  Y  e.  S )
2826, 27syl 17 . . . . . . . . . 10  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e.  ~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  ->  Y  e.  S )
2928adantr 467 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =  (/) )  ->  Y  e.  S )
3025, 29eqeltrrd 2530 . . . . . . . 8  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =  (/) )  ->  { x  e.  Y  |  ( X  X.  { x }
)  e.  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } }  e.  S )
31 ifnefalse 3893 . . . . . . . . . . . . . . 15  |-  ( k  =/=  (/)  ->  if (
k  =  (/) ,  Y ,  v )  =  v )
3231ad2antlr 733 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  if ( k  =  (/) ,  Y ,  v )  =  v )
3332eleq2d 2514 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( x  e.  if ( k  =  (/) ,  Y ,  v )  <-> 
x  e.  v ) )
34 vex 3048 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
3534snss 4096 . . . . . . . . . . . . . . 15  |-  ( x  e.  v  <->  { x }  C_  v )
3633, 35syl6bb 265 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( x  e.  if ( k  =  (/) ,  Y ,  v )  <->  { x }  C_  v ) )
37 df-ima 4847 . . . . . . . . . . . . . . . . 17  |-  ( ( X  X.  { x } ) " k
)  =  ran  (
( X  X.  {
x } )  |`  k )
38 simplrl 770 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e.  ~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  ->  k  e.  ~P U. R )
3938ad2antrr 732 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  k  e.  ~P U. R )
4039elpwid 3961 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  k  C_  U. R )
41 toponuni 19942 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  e.  (TopOn `  X
)  ->  X  =  U. R )
4241ad5antr 740 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  X  =  U. R
)
4340, 42sseqtr4d 3469 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  k  C_  X )
44 xpssres 5139 . . . . . . . . . . . . . . . . . . 19  |-  ( k 
C_  X  ->  (
( X  X.  {
x } )  |`  k )  =  ( k  X.  { x } ) )
4543, 44syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( ( X  X.  { x } )  |`  k )  =  ( k  X.  { x } ) )
4645rneqd 5062 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ran  ( ( X  X.  { x }
)  |`  k )  =  ran  ( k  X. 
{ x } ) )
4737, 46syl5eq 2497 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( ( X  X.  { x } )
" k )  =  ran  ( k  X. 
{ x } ) )
48 rnxp 5267 . . . . . . . . . . . . . . . . 17  |-  ( k  =/=  (/)  ->  ran  ( k  X.  { x }
)  =  { x } )
4948ad2antlr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ran  ( k  X. 
{ x } )  =  { x }
)
5047, 49eqtrd 2485 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( ( X  X.  { x } )
" k )  =  { x } )
5150sseq1d 3459 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( ( ( X  X.  { x }
) " k ) 
C_  v  <->  { x }  C_  v ) )
5211adantlr 721 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( X  X.  {
x } )  e.  ( R  Cn  S
) )
5352biantrurd 511 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( ( ( X  X.  { x }
) " k ) 
C_  v  <->  ( ( X  X.  { x }
)  e.  ( R  Cn  S )  /\  ( ( X  X.  { x } )
" k )  C_  v ) ) )
5436, 51, 533bitr2d 285 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( x  e.  if ( k  =  (/) ,  Y ,  v )  <-> 
( ( X  X.  { x } )  e.  ( R  Cn  S )  /\  (
( X  X.  {
x } ) "
k )  C_  v
) ) )
5533, 54bitr3d 259 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( x  e.  v  <-> 
( ( X  X.  { x } )  e.  ( R  Cn  S )  /\  (
( X  X.  {
x } ) "
k )  C_  v
) ) )
5655, 21syl6bbr 267 . . . . . . . . . . 11  |-  ( ( ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  /\  ( Rt  k
)  e.  Comp )  /\  k  =/=  (/) )  /\  x  e.  Y )  ->  ( x  e.  v  <-> 
( X  X.  {
x } )  e. 
{ f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) )
5756rabbi2dva 3640 . . . . . . . . . 10  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =/=  (/) )  ->  ( Y  i^i  v )  =  { x  e.  Y  |  ( X  X.  { x } )  e.  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v } } )
58 simplrr 771 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e.  ~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  ->  v  e.  S )
59 toponss 19944 . . . . . . . . . . . . 13  |-  ( ( S  e.  (TopOn `  Y )  /\  v  e.  S )  ->  v  C_  Y )
6026, 58, 59syl2anc 667 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e.  ~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  ->  v  C_  Y )
6160adantr 467 . . . . . . . . . . 11  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =/=  (/) )  ->  v  C_  Y )
62 dfss1 3637 . . . . . . . . . . 11  |-  ( v 
C_  Y  <->  ( Y  i^i  v )  =  v )
6361, 62sylib 200 . . . . . . . . . 10  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =/=  (/) )  ->  ( Y  i^i  v )  =  v )
6457, 63eqtr3d 2487 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =/=  (/) )  ->  { x  e.  Y  |  ( X  X.  { x }
)  e.  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } }  =  v )
6558adantr 467 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =/=  (/) )  ->  v  e.  S )
6664, 65eqeltrd 2529 . . . . . . . 8  |-  ( ( ( ( ( R  e.  (TopOn `  X
)  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e. 
~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  /\  k  =/=  (/) )  ->  { x  e.  Y  |  ( X  X.  { x }
)  e.  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } }  e.  S )
6730, 66pm2.61dane 2711 . . . . . . 7  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e.  ~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  ->  { x  e.  Y  |  ( X  X.  { x }
)  e.  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } }  e.  S )
68 imaeq2 5164 . . . . . . . . 9  |-  ( y  =  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v }  ->  ( `' ( x  e.  Y  |->  ( X  X.  {
x } ) )
" y )  =  ( `' ( x  e.  Y  |->  ( X  X.  { x }
) ) " {
f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) )
693mptpreima 5328 . . . . . . . . 9  |-  ( `' ( x  e.  Y  |->  ( X  X.  {
x } ) )
" { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v } )  =  {
x  e.  Y  | 
( X  X.  {
x } )  e. 
{ f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } }
7068, 69syl6eq 2501 . . . . . . . 8  |-  ( y  =  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v }  ->  ( `' ( x  e.  Y  |->  ( X  X.  {
x } ) )
" y )  =  { x  e.  Y  |  ( X  X.  { x } )  e.  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v } } )
7170eleq1d 2513 . . . . . . 7  |-  ( y  =  { f  e.  ( R  Cn  S
)  |  ( f
" k )  C_  v }  ->  ( ( `' ( x  e.  Y  |->  ( X  X.  { x } ) ) " y )  e.  S  <->  { x  e.  Y  |  ( X  X.  { x }
)  e.  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } }  e.  S ) )
7267, 71syl5ibrcom 226 . . . . . 6  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  ( k  e.  ~P U. R  /\  v  e.  S ) )  /\  ( Rt  k )  e. 
Comp )  ->  (
y  =  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v }  ->  ( `' ( x  e.  Y  |->  ( X  X.  { x } ) ) " y )  e.  S ) )
7372expimpd 608 . . . . 5  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( k  e.  ~P U. R  /\  v  e.  S )
)  ->  ( (
( Rt  k )  e. 
Comp  /\  y  =  {
f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)  ->  ( `' ( x  e.  Y  |->  ( X  X.  {
x } ) )
" y )  e.  S ) )
7473rexlimdvva 2886 . . . 4  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( E. k  e.  ~P  U. R E. v  e.  S  ( ( Rt  k )  e.  Comp  /\  y  =  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  ->  ( `' ( x  e.  Y  |->  ( X  X.  { x } ) ) " y )  e.  S ) )
759, 74syl5bi 221 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( y  e.  ran  ( k  e. 
{ z  e.  ~P U. R  |  ( Rt  z )  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)  ->  ( `' ( x  e.  Y  |->  ( X  X.  {
x } ) )
" y )  e.  S ) )
7675ralrimiv 2800 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  A. y  e.  ran  ( k  e. 
{ z  e.  ~P U. R  |  ( Rt  z )  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) ( `' ( x  e.  Y  |->  ( X  X.  { x } ) ) "
y )  e.  S
)
77 simpr 463 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  S  e.  (TopOn `  Y ) )
78 ovex 6318 . . . . . 6  |-  ( R  Cn  S )  e. 
_V
7978pwex 4586 . . . . 5  |-  ~P ( R  Cn  S )  e. 
_V
805, 6, 7xkotf 20600 . . . . . 6  |-  ( k  e.  { z  e. 
~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) : ( { z  e.  ~P U. R  |  ( Rt  z )  e.  Comp }  X.  S ) --> ~P ( R  Cn  S )
81 frn 5735 . . . . . 6  |-  ( ( k  e.  { z  e.  ~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } ) : ( { z  e.  ~P U. R  |  ( Rt  z )  e.  Comp }  X.  S
) --> ~P ( R  Cn  S )  ->  ran  ( k  e.  {
z  e.  ~P U. R  |  ( Rt  z
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
)  C_  ~P ( R  Cn  S ) )
8280, 81ax-mp 5 . . . . 5  |-  ran  (
k  e.  { z  e.  ~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } ) 
C_  ~P ( R  Cn  S )
8379, 82ssexi 4548 . . . 4  |-  ran  (
k  e.  { z  e.  ~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k ) 
C_  v } )  e.  _V
8483a1i 11 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ran  ( k  e.  { z  e. 
~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } )  e.  _V )
85 topontop 19941 . . . 4  |-  ( R  e.  (TopOn `  X
)  ->  R  e.  Top )
86 topontop 19941 . . . 4  |-  ( S  e.  (TopOn `  Y
)  ->  S  e.  Top )
875, 6, 7xkoval 20602 . . . 4  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( S  ^ko  R )  =  (
topGen `  ( fi `  ran  ( k  e.  {
z  e.  ~P U. R  |  ( Rt  z
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) ) ) )
8885, 86, 87syl2an 480 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( S  ^ko  R )  =  ( topGen `  ( fi `  ran  ( k  e.  {
z  e.  ~P U. R  |  ( Rt  z
)  e.  Comp } , 
v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f " k
)  C_  v }
) ) ) )
89 eqid 2451 . . . . 5  |-  ( S  ^ko  R )  =  ( S  ^ko  R )
9089xkotopon 20615 . . . 4  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( S  ^ko  R )  e.  (TopOn `  ( R  Cn  S
) ) )
9185, 86, 90syl2an 480 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( S  ^ko  R )  e.  (TopOn `  ( R  Cn  S
) ) )
9277, 84, 88, 91subbascn 20270 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( (
x  e.  Y  |->  ( X  X.  { x } ) )  e.  ( S  Cn  ( S  ^ko  R ) )  <->  ( (
x  e.  Y  |->  ( X  X.  { x } ) ) : Y --> ( R  Cn  S )  /\  A. y  e.  ran  ( k  e.  { z  e. 
~P U. R  |  ( Rt  z )  e.  Comp } ,  v  e.  S  |->  { f  e.  ( R  Cn  S )  |  ( f "
k )  C_  v } ) ( `' ( x  e.  Y  |->  ( X  X.  {
x } ) )
" y )  e.  S ) ) )
934, 76, 92mpbir2and 933 1  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( x  e.  Y  |->  ( X  X.  { x }
) )  e.  ( S  Cn  ( S  ^ko  R ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738   {crab 2741   _Vcvv 3045    i^i cin 3403    C_ wss 3404   (/)c0 3731   ifcif 3881   ~Pcpw 3951   {csn 3968   U.cuni 4198    |-> cmpt 4461    X. cxp 4832   `'ccnv 4833   ran crn 4835    |` cres 4836   "cima 4837   -->wf 5578   ` cfv 5582  (class class class)co 6290    |-> cmpt2 6292   ficfi 7924   ↾t crest 15319   topGenctg 15336   Topctop 19917  TopOnctopon 19918    Cn ccn 20240   Compccmp 20401    ^ko cxko 20576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-fin 7573  df-fi 7925  df-rest 15321  df-topgen 15342  df-top 19921  df-bases 19922  df-topon 19923  df-cn 20243  df-cnp 20244  df-cmp 20402  df-xko 20578
This theorem is referenced by:  cnmptkc  20694  xkofvcn  20699
  Copyright terms: Public domain W3C validator