MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac14 Structured version   Visualization version   GIF version

Theorem dfac14 21231
Description: Theorem ptcls 21229 is an equivalent of the axiom of choice. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
dfac14 (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))))
Distinct variable group:   𝑓,𝑘,𝑠

Proof of Theorem dfac14
Dummy variables 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝑓𝑘) = (𝑓𝑥))
21unieqd 4382 . . . . . . . . 9 (𝑘 = 𝑥 (𝑓𝑘) = (𝑓𝑥))
32pweqd 4113 . . . . . . . 8 (𝑘 = 𝑥 → 𝒫 (𝑓𝑘) = 𝒫 (𝑓𝑥))
43cbvixpv 7812 . . . . . . 7 X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) = X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)
54eleq2i 2680 . . . . . 6 (𝑠X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) ↔ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥))
6 simplr 788 . . . . . . . . . . 11 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → 𝑓:dom 𝑓⟶Top)
76feqmptd 6159 . . . . . . . . . 10 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → 𝑓 = (𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘)))
87fveq2d 6107 . . . . . . . . 9 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → (∏t𝑓) = (∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘))))
98fveq2d 6107 . . . . . . . 8 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → (cls‘(∏t𝑓)) = (cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘)))))
109fveq1d 6105 . . . . . . 7 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → ((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = ((cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘))))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)))
11 eqid 2610 . . . . . . . 8 (∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘))) = (∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘)))
12 vex 3176 . . . . . . . . . 10 𝑓 ∈ V
1312dmex 6991 . . . . . . . . 9 dom 𝑓 ∈ V
1413a1i 11 . . . . . . . 8 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → dom 𝑓 ∈ V)
156ffvelrnda 6267 . . . . . . . . 9 ((((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑓𝑘) ∈ Top)
16 eqid 2610 . . . . . . . . . 10 (𝑓𝑘) = (𝑓𝑘)
1716toptopon 20548 . . . . . . . . 9 ((𝑓𝑘) ∈ Top ↔ (𝑓𝑘) ∈ (TopOn‘ (𝑓𝑘)))
1815, 17sylib 207 . . . . . . . 8 ((((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑓𝑘) ∈ (TopOn‘ (𝑓𝑘)))
19 simpr 476 . . . . . . . . . . . 12 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥))
2019, 5sylibr 223 . . . . . . . . . . 11 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → 𝑠X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘))
21 vex 3176 . . . . . . . . . . . . 13 𝑠 ∈ V
2221elixp 7801 . . . . . . . . . . . 12 (𝑠X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) ↔ (𝑠 Fn dom 𝑓 ∧ ∀𝑘 ∈ dom 𝑓(𝑠𝑘) ∈ 𝒫 (𝑓𝑘)))
2322simprbi 479 . . . . . . . . . . 11 (𝑠X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) → ∀𝑘 ∈ dom 𝑓(𝑠𝑘) ∈ 𝒫 (𝑓𝑘))
2420, 23syl 17 . . . . . . . . . 10 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → ∀𝑘 ∈ dom 𝑓(𝑠𝑘) ∈ 𝒫 (𝑓𝑘))
2524r19.21bi 2916 . . . . . . . . 9 ((((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑠𝑘) ∈ 𝒫 (𝑓𝑘))
2625elpwid 4118 . . . . . . . 8 ((((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑠𝑘) ⊆ (𝑓𝑘))
27 fvex 6113 . . . . . . . . . 10 (𝑠𝑘) ∈ V
2813, 27iunex 7039 . . . . . . . . 9 𝑘 ∈ dom 𝑓(𝑠𝑘) ∈ V
29 simpll 786 . . . . . . . . . 10 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → CHOICE)
30 acacni 8845 . . . . . . . . . 10 ((CHOICE ∧ dom 𝑓 ∈ V) → AC dom 𝑓 = V)
3129, 13, 30sylancl 693 . . . . . . . . 9 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → AC dom 𝑓 = V)
3228, 31syl5eleqr 2695 . . . . . . . 8 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → 𝑘 ∈ dom 𝑓(𝑠𝑘) ∈ AC dom 𝑓)
3311, 14, 18, 26, 32ptclsg 21228 . . . . . . 7 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → ((cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘))))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)))
3410, 33eqtrd 2644 . . . . . 6 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → ((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)))
355, 34sylan2b 491 . . . . 5 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)) → ((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)))
3635ralrimiva 2949 . . . 4 ((CHOICE𝑓:dom 𝑓⟶Top) → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)))
3736ex 449 . . 3 (CHOICE → (𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))))
3837alrimiv 1842 . 2 (CHOICE → ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))))
39 vex 3176 . . . . . . . 8 𝑔 ∈ V
4039dmex 6991 . . . . . . 7 dom 𝑔 ∈ V
4140a1i 11 . . . . . 6 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → dom 𝑔 ∈ V)
42 fvex 6113 . . . . . . 7 (𝑔𝑥) ∈ V
4342a1i 11 . . . . . 6 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ∈ V)
44 simplrr 797 . . . . . . . 8 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ∅ ∉ ran 𝑔)
45 df-nel 2783 . . . . . . . 8 (∅ ∉ ran 𝑔 ↔ ¬ ∅ ∈ ran 𝑔)
4644, 45sylib 207 . . . . . . 7 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ¬ ∅ ∈ ran 𝑔)
47 funforn 6035 . . . . . . . . . . . 12 (Fun 𝑔𝑔:dom 𝑔onto→ran 𝑔)
48 fof 6028 . . . . . . . . . . . 12 (𝑔:dom 𝑔onto→ran 𝑔𝑔:dom 𝑔⟶ran 𝑔)
4947, 48sylbi 206 . . . . . . . . . . 11 (Fun 𝑔𝑔:dom 𝑔⟶ran 𝑔)
5049ad2antrl 760 . . . . . . . . . 10 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔:dom 𝑔⟶ran 𝑔)
5150ffvelrnda 6267 . . . . . . . . 9 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ∈ ran 𝑔)
52 eleq1 2676 . . . . . . . . 9 ((𝑔𝑥) = ∅ → ((𝑔𝑥) ∈ ran 𝑔 ↔ ∅ ∈ ran 𝑔))
5351, 52syl5ibcom 234 . . . . . . . 8 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ((𝑔𝑥) = ∅ → ∅ ∈ ran 𝑔))
5453necon3bd 2796 . . . . . . 7 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (¬ ∅ ∈ ran 𝑔 → (𝑔𝑥) ≠ ∅))
5546, 54mpd 15 . . . . . 6 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ≠ ∅)
56 eqid 2610 . . . . . 6 𝒫 (𝑔𝑥) = 𝒫 (𝑔𝑥)
57 eqid 2610 . . . . . 6 {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} = {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}
58 eqid 2610 . . . . . 6 (∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})) = (∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}))
59 simprl 790 . . . . . . . . 9 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → Fun 𝑔)
60 funfn 5833 . . . . . . . . 9 (Fun 𝑔𝑔 Fn dom 𝑔)
6159, 60sylib 207 . . . . . . . 8 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔 Fn dom 𝑔)
62 ssun1 3738 . . . . . . . . . . 11 (𝑔𝑘) ⊆ ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})
63 fvex 6113 . . . . . . . . . . . 12 (𝑔𝑘) ∈ V
6463elpw 4114 . . . . . . . . . . 11 ((𝑔𝑘) ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ↔ (𝑔𝑘) ⊆ ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
6562, 64mpbir 220 . . . . . . . . . 10 (𝑔𝑘) ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})
6665rgenw 2908 . . . . . . . . 9 𝑘 ∈ dom 𝑔(𝑔𝑘) ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})
6766a1i 11 . . . . . . . 8 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → ∀𝑘 ∈ dom 𝑔(𝑔𝑘) ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
6839elixp 7801 . . . . . . . 8 (𝑔X𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ↔ (𝑔 Fn dom 𝑔 ∧ ∀𝑘 ∈ dom 𝑔(𝑔𝑘) ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})))
6961, 67, 68sylanbrc 695 . . . . . . 7 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔X𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
70 simpl 472 . . . . . . . 8 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))))
71 snex 4835 . . . . . . . . . . . . 13 {𝒫 (𝑔𝑥)} ∈ V
7242, 71unex 6854 . . . . . . . . . . . 12 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∈ V
73 ssun2 3739 . . . . . . . . . . . . 13 {𝒫 (𝑔𝑥)} ⊆ ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})
7442uniex 6851 . . . . . . . . . . . . . . 15 (𝑔𝑥) ∈ V
7574pwex 4774 . . . . . . . . . . . . . 14 𝒫 (𝑔𝑥) ∈ V
7675snid 4155 . . . . . . . . . . . . 13 𝒫 (𝑔𝑥) ∈ {𝒫 (𝑔𝑥)}
7773, 76sselii 3565 . . . . . . . . . . . 12 𝒫 (𝑔𝑥) ∈ ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})
78 epttop 20623 . . . . . . . . . . . 12 ((((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∈ V ∧ 𝒫 (𝑔𝑥) ∈ ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})) → {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} ∈ (TopOn‘((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})))
7972, 77, 78mp2an 704 . . . . . . . . . . 11 {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} ∈ (TopOn‘((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))
8079topontopi 20546 . . . . . . . . . 10 {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} ∈ Top
8180a1i 11 . . . . . . . . 9 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} ∈ Top)
82 eqid 2610 . . . . . . . . 9 (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})
8381, 82fmptd 6292 . . . . . . . 8 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}):dom 𝑔⟶Top)
8440mptex 6390 . . . . . . . . 9 (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∈ V
85 id 22 . . . . . . . . . . 11 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → 𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}))
86 dmeq 5246 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → dom 𝑓 = dom (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}))
8772pwex 4774 . . . . . . . . . . . . . 14 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∈ V
8887rabex 4740 . . . . . . . . . . . . 13 {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} ∈ V
8988, 82dmmpti 5936 . . . . . . . . . . . 12 dom (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) = dom 𝑔
9086, 89syl6eq 2660 . . . . . . . . . . 11 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → dom 𝑓 = dom 𝑔)
9185, 90feq12d 5946 . . . . . . . . . 10 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → (𝑓:dom 𝑓⟶Top ↔ (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}):dom 𝑔⟶Top))
9290ixpeq1d 7806 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) = X𝑘 ∈ dom 𝑔𝒫 (𝑓𝑘))
93 fveq1 6102 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → (𝑓𝑘) = ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘𝑘))
94 fveq2 6103 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑘 → (𝑔𝑥) = (𝑔𝑘))
9594unieqd 4382 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑘 (𝑔𝑥) = (𝑔𝑘))
9695pweqd 4113 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑘 → 𝒫 (𝑔𝑥) = 𝒫 (𝑔𝑘))
9796sneqd 4137 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑘 → {𝒫 (𝑔𝑥)} = {𝒫 (𝑔𝑘)})
9894, 97uneq12d 3730 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑘 → ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
9998pweqd 4113 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘 → 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) = 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
10096eleq1d 2672 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑘 → (𝒫 (𝑔𝑥) ∈ 𝑦 ↔ 𝒫 (𝑔𝑘) ∈ 𝑦))
10198eqeq2d 2620 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑘 → (𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ↔ 𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})))
102100, 101imbi12d 333 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘 → ((𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})) ↔ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))))
10399, 102rabeqbidv 3168 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑘 → {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} = {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})
104 snex 4835 . . . . . . . . . . . . . . . . . . . . 21 {𝒫 (𝑔𝑘)} ∈ V
10563, 104unex 6854 . . . . . . . . . . . . . . . . . . . 20 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∈ V
106105pwex 4774 . . . . . . . . . . . . . . . . . . 19 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∈ V
107106rabex 4740 . . . . . . . . . . . . . . . . . 18 {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))} ∈ V
108103, 82, 107fvmpt 6191 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ dom 𝑔 → ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘𝑘) = {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})
10993, 108sylan9eq 2664 . . . . . . . . . . . . . . . 16 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (𝑓𝑘) = {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})
110109unieqd 4382 . . . . . . . . . . . . . . 15 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (𝑓𝑘) = {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})
111 ssun2 3739 . . . . . . . . . . . . . . . . . 18 {𝒫 (𝑔𝑘)} ⊆ ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})
11263uniex 6851 . . . . . . . . . . . . . . . . . . . 20 (𝑔𝑘) ∈ V
113112pwex 4774 . . . . . . . . . . . . . . . . . . 19 𝒫 (𝑔𝑘) ∈ V
114113snid 4155 . . . . . . . . . . . . . . . . . 18 𝒫 (𝑔𝑘) ∈ {𝒫 (𝑔𝑘)}
115111, 114sselii 3565 . . . . . . . . . . . . . . . . 17 𝒫 (𝑔𝑘) ∈ ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})
116 epttop 20623 . . . . . . . . . . . . . . . . 17 ((((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∈ V ∧ 𝒫 (𝑔𝑘) ∈ ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})) → {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))} ∈ (TopOn‘((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})))
117105, 115, 116mp2an 704 . . . . . . . . . . . . . . . 16 {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))} ∈ (TopOn‘((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
118117toponunii 20547 . . . . . . . . . . . . . . 15 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) = {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))}
119110, 118syl6eqr 2662 . . . . . . . . . . . . . 14 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (𝑓𝑘) = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
120119pweqd 4113 . . . . . . . . . . . . 13 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → 𝒫 (𝑓𝑘) = 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
121120ixpeq2dva 7809 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑔𝒫 (𝑓𝑘) = X𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
12292, 121eqtrd 2644 . . . . . . . . . . 11 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) = X𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
123 fveq2 6103 . . . . . . . . . . . . . 14 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → (∏t𝑓) = (∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))
124123fveq2d 6107 . . . . . . . . . . . . 13 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → (cls‘(∏t𝑓)) = (cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}))))
12590ixpeq1d 7806 . . . . . . . . . . . . 13 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑓(𝑠𝑘) = X𝑘 ∈ dom 𝑔(𝑠𝑘))
126124, 125fveq12d 6109 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → ((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)))
12790ixpeq1d 7806 . . . . . . . . . . . . 13 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘(𝑓𝑘))‘(𝑠𝑘)))
128109fveq2d 6107 . . . . . . . . . . . . . . 15 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (cls‘(𝑓𝑘)) = (cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))}))
129128fveq1d 6105 . . . . . . . . . . . . . 14 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → ((cls‘(𝑓𝑘))‘(𝑠𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)))
130129ixpeq2dva 7809 . . . . . . . . . . . . 13 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑔((cls‘(𝑓𝑘))‘(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)))
131127, 130eqtrd 2644 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)))
132126, 131eqeq12d 2625 . . . . . . . . . . 11 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → (((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)) ↔ ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘))))
133122, 132raleqbidv 3129 . . . . . . . . . 10 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → (∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)) ↔ ∀𝑠X 𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘))))
13491, 133imbi12d 333 . . . . . . . . 9 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → ((𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ↔ ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}):dom 𝑔⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)))))
13584, 134spcv 3272 . . . . . . . 8 (∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) → ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}):dom 𝑔⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘))))
13670, 83, 135sylc 63 . . . . . . 7 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → ∀𝑠X 𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)))
137 fveq1 6102 . . . . . . . . . . . 12 (𝑠 = 𝑔 → (𝑠𝑘) = (𝑔𝑘))
138137ixpeq2dv 7810 . . . . . . . . . . 11 (𝑠 = 𝑔X𝑘 ∈ dom 𝑔(𝑠𝑘) = X𝑘 ∈ dom 𝑔(𝑔𝑘))
139 fveq2 6103 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (𝑔𝑘) = (𝑔𝑥))
140139cbvixpv 7812 . . . . . . . . . . 11 X𝑘 ∈ dom 𝑔(𝑔𝑘) = X𝑥 ∈ dom 𝑔(𝑔𝑥)
141138, 140syl6eq 2660 . . . . . . . . . 10 (𝑠 = 𝑔X𝑘 ∈ dom 𝑔(𝑠𝑘) = X𝑥 ∈ dom 𝑔(𝑔𝑥))
142141fveq2d 6107 . . . . . . . . 9 (𝑠 = 𝑔 → ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔𝑥)))
143137fveq2d 6107 . . . . . . . . . . 11 (𝑠 = 𝑔 → ((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑔𝑘)))
144143ixpeq2dv 7810 . . . . . . . . . 10 (𝑠 = 𝑔X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑔𝑘)))
145139unieqd 4382 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥 (𝑔𝑘) = (𝑔𝑥))
146145pweqd 4113 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥 → 𝒫 (𝑔𝑘) = 𝒫 (𝑔𝑥))
147146sneqd 4137 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑥 → {𝒫 (𝑔𝑘)} = {𝒫 (𝑔𝑥)})
148139, 147uneq12d 3730 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))
149148pweqd 4113 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) = 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))
150146eleq1d 2672 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → (𝒫 (𝑔𝑘) ∈ 𝑦 ↔ 𝒫 (𝑔𝑥) ∈ 𝑦))
151148eqeq2d 2620 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → (𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ↔ 𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})))
152150, 151imbi12d 333 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → ((𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})) ↔ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))))
153149, 152rabeqbidv 3168 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))} = {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})
154153fveq2d 6107 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))}) = (cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}))
155154, 139fveq12d 6109 . . . . . . . . . . 11 (𝑘 = 𝑥 → ((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑔𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘(𝑔𝑥)))
156155cbvixpv 7812 . . . . . . . . . 10 X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑔𝑘)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘(𝑔𝑥))
157144, 156syl6eq 2660 . . . . . . . . 9 (𝑠 = 𝑔X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘(𝑔𝑥)))
158142, 157eqeq12d 2625 . . . . . . . 8 (𝑠 = 𝑔 → (((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)) ↔ ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔𝑥)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘(𝑔𝑥))))
159158rspcv 3278 . . . . . . 7 (𝑔X𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) → (∀𝑠X 𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)) → ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔𝑥)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘(𝑔𝑥))))
16069, 136, 159sylc 63 . . . . . 6 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔𝑥)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘(𝑔𝑥)))
16141, 43, 55, 56, 57, 58, 160dfac14lem 21230 . . . . 5 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅)
162161ex 449 . . . 4 (∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) → ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
163162alrimiv 1842 . . 3 (∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) → ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
164 dfac9 8841 . . 3 (CHOICE ↔ ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
165163, 164sylibr 223 . 2 (∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) → CHOICE)
16638, 165impbii 198 1 (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wcel 1977  wne 2780  wnel 2781  wral 2896  {crab 2900  Vcvv 3173  cun 3538  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   cuni 4372   ciun 4455  cmpt 4643  dom cdm 5038  ran crn 5039  Fun wfun 5798   Fn wfn 5799  wf 5800  ontowfo 5802  cfv 5804  Xcixp 7794  AC wacn 8647  CHOICEwac 8821  tcpt 15922  Topctop 20517  TopOnctopon 20518  clsccl 20632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-fin 7845  df-fi 8200  df-card 8648  df-acn 8651  df-ac 8822  df-topgen 15927  df-pt 15928  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator