Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac14lem Structured version   Visualization version   GIF version

Theorem dfac14lem 21230
 Description: Lemma for dfac14 21231. By equipping 𝑆 ∪ {𝑃} for some 𝑃 ∉ 𝑆 with the particular point topology, we can show that 𝑃 is in the closure of 𝑆; hence the sequence 𝑃(𝑥) is in the product of the closures, and we can utilize this instance of ptcls 21229 to extract an element of the closure of X𝑘 ∈ 𝐼𝑆. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
dfac14lem.i (𝜑𝐼𝑉)
dfac14lem.s ((𝜑𝑥𝐼) → 𝑆𝑊)
dfac14lem.0 ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
dfac14lem.p 𝑃 = 𝒫 𝑆
dfac14lem.r 𝑅 = {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃𝑦𝑦 = (𝑆 ∪ {𝑃}))}
dfac14lem.j 𝐽 = (∏t‘(𝑥𝐼𝑅))
dfac14lem.c (𝜑 → ((cls‘𝐽)‘X𝑥𝐼 𝑆) = X𝑥𝐼 ((cls‘𝑅)‘𝑆))
Assertion
Ref Expression
dfac14lem (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Distinct variable groups:   𝑥,𝐼   𝑦,𝑃   𝜑,𝑥   𝑦,𝑆
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑥)   𝑅(𝑥,𝑦)   𝑆(𝑥)   𝐼(𝑦)   𝐽(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem dfac14lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2677 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑃𝑦𝑃𝑧))
2 eqeq1 2614 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 = (𝑆 ∪ {𝑃}) ↔ 𝑧 = (𝑆 ∪ {𝑃})))
31, 2imbi12d 333 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑃𝑦𝑦 = (𝑆 ∪ {𝑃})) ↔ (𝑃𝑧𝑧 = (𝑆 ∪ {𝑃}))))
4 dfac14lem.r . . . . . . . . . 10 𝑅 = {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃𝑦𝑦 = (𝑆 ∪ {𝑃}))}
53, 4elrab2 3333 . . . . . . . . 9 (𝑧𝑅 ↔ (𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∧ (𝑃𝑧𝑧 = (𝑆 ∪ {𝑃}))))
6 dfac14lem.0 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
76adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥𝐼) ∧ 𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃})) → 𝑆 ≠ ∅)
8 ineq1 3769 . . . . . . . . . . . . . 14 (𝑧 = (𝑆 ∪ {𝑃}) → (𝑧𝑆) = ((𝑆 ∪ {𝑃}) ∩ 𝑆))
9 ssun1 3738 . . . . . . . . . . . . . . 15 𝑆 ⊆ (𝑆 ∪ {𝑃})
10 sseqin2 3779 . . . . . . . . . . . . . . 15 (𝑆 ⊆ (𝑆 ∪ {𝑃}) ↔ ((𝑆 ∪ {𝑃}) ∩ 𝑆) = 𝑆)
119, 10mpbi 219 . . . . . . . . . . . . . 14 ((𝑆 ∪ {𝑃}) ∩ 𝑆) = 𝑆
128, 11syl6eq 2660 . . . . . . . . . . . . 13 (𝑧 = (𝑆 ∪ {𝑃}) → (𝑧𝑆) = 𝑆)
1312neeq1d 2841 . . . . . . . . . . . 12 (𝑧 = (𝑆 ∪ {𝑃}) → ((𝑧𝑆) ≠ ∅ ↔ 𝑆 ≠ ∅))
147, 13syl5ibrcom 236 . . . . . . . . . . 11 (((𝜑𝑥𝐼) ∧ 𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃})) → (𝑧 = (𝑆 ∪ {𝑃}) → (𝑧𝑆) ≠ ∅))
1514imim2d 55 . . . . . . . . . 10 (((𝜑𝑥𝐼) ∧ 𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃})) → ((𝑃𝑧𝑧 = (𝑆 ∪ {𝑃})) → (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
1615expimpd 627 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝑧 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∧ (𝑃𝑧𝑧 = (𝑆 ∪ {𝑃}))) → (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
175, 16syl5bi 231 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑧𝑅 → (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
1817ralrimiv 2948 . . . . . . 7 ((𝜑𝑥𝐼) → ∀𝑧𝑅 (𝑃𝑧 → (𝑧𝑆) ≠ ∅))
19 dfac14lem.s . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝑆𝑊)
20 snex 4835 . . . . . . . . . . . 12 {𝑃} ∈ V
21 unexg 6857 . . . . . . . . . . . 12 ((𝑆𝑊 ∧ {𝑃} ∈ V) → (𝑆 ∪ {𝑃}) ∈ V)
2219, 20, 21sylancl 693 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝑆 ∪ {𝑃}) ∈ V)
23 ssun2 3739 . . . . . . . . . . . 12 {𝑃} ⊆ (𝑆 ∪ {𝑃})
24 dfac14lem.p . . . . . . . . . . . . . 14 𝑃 = 𝒫 𝑆
25 uniexg 6853 . . . . . . . . . . . . . . 15 (𝑆𝑊 𝑆 ∈ V)
26 pwexg 4776 . . . . . . . . . . . . . . 15 ( 𝑆 ∈ V → 𝒫 𝑆 ∈ V)
2719, 25, 263syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → 𝒫 𝑆 ∈ V)
2824, 27syl5eqel 2692 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 𝑃 ∈ V)
29 snidg 4153 . . . . . . . . . . . . 13 (𝑃 ∈ V → 𝑃 ∈ {𝑃})
3028, 29syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝑃 ∈ {𝑃})
3123, 30sseldi 3566 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → 𝑃 ∈ (𝑆 ∪ {𝑃}))
32 epttop 20623 . . . . . . . . . . 11 (((𝑆 ∪ {𝑃}) ∈ V ∧ 𝑃 ∈ (𝑆 ∪ {𝑃})) → {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃𝑦𝑦 = (𝑆 ∪ {𝑃}))} ∈ (TopOn‘(𝑆 ∪ {𝑃})))
3322, 31, 32syl2anc 691 . . . . . . . . . 10 ((𝜑𝑥𝐼) → {𝑦 ∈ 𝒫 (𝑆 ∪ {𝑃}) ∣ (𝑃𝑦𝑦 = (𝑆 ∪ {𝑃}))} ∈ (TopOn‘(𝑆 ∪ {𝑃})))
344, 33syl5eqel 2692 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃})))
35 topontop 20541 . . . . . . . . 9 (𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃})) → 𝑅 ∈ Top)
3634, 35syl 17 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑅 ∈ Top)
37 toponuni 20542 . . . . . . . . . 10 (𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃})) → (𝑆 ∪ {𝑃}) = 𝑅)
3834, 37syl 17 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑆 ∪ {𝑃}) = 𝑅)
399, 38syl5sseq 3616 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑆 𝑅)
4031, 38eleqtrd 2690 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑃 𝑅)
41 eqid 2610 . . . . . . . . 9 𝑅 = 𝑅
4241elcls 20687 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 𝑅𝑃 𝑅) → (𝑃 ∈ ((cls‘𝑅)‘𝑆) ↔ ∀𝑧𝑅 (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
4336, 39, 40, 42syl3anc 1318 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑃 ∈ ((cls‘𝑅)‘𝑆) ↔ ∀𝑧𝑅 (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
4418, 43mpbird 246 . . . . . 6 ((𝜑𝑥𝐼) → 𝑃 ∈ ((cls‘𝑅)‘𝑆))
4544ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑥𝐼 𝑃 ∈ ((cls‘𝑅)‘𝑆))
46 dfac14lem.i . . . . . 6 (𝜑𝐼𝑉)
47 mptelixpg 7831 . . . . . 6 (𝐼𝑉 → ((𝑥𝐼𝑃) ∈ X𝑥𝐼 ((cls‘𝑅)‘𝑆) ↔ ∀𝑥𝐼 𝑃 ∈ ((cls‘𝑅)‘𝑆)))
4846, 47syl 17 . . . . 5 (𝜑 → ((𝑥𝐼𝑃) ∈ X𝑥𝐼 ((cls‘𝑅)‘𝑆) ↔ ∀𝑥𝐼 𝑃 ∈ ((cls‘𝑅)‘𝑆)))
4945, 48mpbird 246 . . . 4 (𝜑 → (𝑥𝐼𝑃) ∈ X𝑥𝐼 ((cls‘𝑅)‘𝑆))
50 ne0i 3880 . . . 4 ((𝑥𝐼𝑃) ∈ X𝑥𝐼 ((cls‘𝑅)‘𝑆) → X𝑥𝐼 ((cls‘𝑅)‘𝑆) ≠ ∅)
5149, 50syl 17 . . 3 (𝜑X𝑥𝐼 ((cls‘𝑅)‘𝑆) ≠ ∅)
52 dfac14lem.c . . 3 (𝜑 → ((cls‘𝐽)‘X𝑥𝐼 𝑆) = X𝑥𝐼 ((cls‘𝑅)‘𝑆))
5334ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑥𝐼 𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃})))
54 dfac14lem.j . . . . . 6 𝐽 = (∏t‘(𝑥𝐼𝑅))
5554pttopon 21209 . . . . 5 ((𝐼𝑉 ∧ ∀𝑥𝐼 𝑅 ∈ (TopOn‘(𝑆 ∪ {𝑃}))) → 𝐽 ∈ (TopOn‘X𝑥𝐼 (𝑆 ∪ {𝑃})))
5646, 53, 55syl2anc 691 . . . 4 (𝜑𝐽 ∈ (TopOn‘X𝑥𝐼 (𝑆 ∪ {𝑃})))
57 topontop 20541 . . . 4 (𝐽 ∈ (TopOn‘X𝑥𝐼 (𝑆 ∪ {𝑃})) → 𝐽 ∈ Top)
58 cls0 20694 . . . 4 (𝐽 ∈ Top → ((cls‘𝐽)‘∅) = ∅)
5956, 57, 583syl 18 . . 3 (𝜑 → ((cls‘𝐽)‘∅) = ∅)
6051, 52, 593netr4d 2859 . 2 (𝜑 → ((cls‘𝐽)‘X𝑥𝐼 𝑆) ≠ ((cls‘𝐽)‘∅))
61 fveq2 6103 . . 3 (X𝑥𝐼 𝑆 = ∅ → ((cls‘𝐽)‘X𝑥𝐼 𝑆) = ((cls‘𝐽)‘∅))
6261necon3i 2814 . 2 (((cls‘𝐽)‘X𝑥𝐼 𝑆) ≠ ((cls‘𝐽)‘∅) → X𝑥𝐼 𝑆 ≠ ∅)
6360, 62syl 17 1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  {crab 2900  Vcvv 3173   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  {csn 4125  ∪ cuni 4372   ↦ cmpt 4643  ‘cfv 5804  Xcixp 7794  ∏tcpt 15922  Topctop 20517  TopOnctopon 20518  clsccl 20632 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ixp 7795  df-en 7842  df-fin 7845  df-fi 8200  df-topgen 15927  df-pt 15928  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635 This theorem is referenced by:  dfac14  21231
 Copyright terms: Public domain W3C validator