MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcls Structured version   Visualization version   GIF version

Theorem ptcls 21229
Description: The closure of a box in the product topology is the box formed from the closures of the factors. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
ptcls.2 𝐽 = (∏t‘(𝑘𝐴𝑅))
ptcls.a (𝜑𝐴𝑉)
ptcls.j ((𝜑𝑘𝐴) → 𝑅 ∈ (TopOn‘𝑋))
ptcls.c ((𝜑𝑘𝐴) → 𝑆𝑋)
Assertion
Ref Expression
ptcls (𝜑 → ((cls‘𝐽)‘X𝑘𝐴 𝑆) = X𝑘𝐴 ((cls‘𝑅)‘𝑆))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘
Allowed substitution hints:   𝑅(𝑘)   𝑆(𝑘)   𝐽(𝑘)   𝑉(𝑘)   𝑋(𝑘)

Proof of Theorem ptcls
StepHypRef Expression
1 ptcls.2 . 2 𝐽 = (∏t‘(𝑘𝐴𝑅))
2 ptcls.a . 2 (𝜑𝐴𝑉)
3 ptcls.j . 2 ((𝜑𝑘𝐴) → 𝑅 ∈ (TopOn‘𝑋))
4 ptcls.c . 2 ((𝜑𝑘𝐴) → 𝑆𝑋)
5 toponmax 20543 . . . . . . 7 (𝑅 ∈ (TopOn‘𝑋) → 𝑋𝑅)
63, 5syl 17 . . . . . 6 ((𝜑𝑘𝐴) → 𝑋𝑅)
76, 4ssexd 4733 . . . . 5 ((𝜑𝑘𝐴) → 𝑆 ∈ V)
87ralrimiva 2949 . . . 4 (𝜑 → ∀𝑘𝐴 𝑆 ∈ V)
9 iunexg 7035 . . . 4 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝑆 ∈ V) → 𝑘𝐴 𝑆 ∈ V)
102, 8, 9syl2anc 691 . . 3 (𝜑 𝑘𝐴 𝑆 ∈ V)
11 axac3 9169 . . . 4 CHOICE
12 acacni 8845 . . . 4 ((CHOICE𝐴𝑉) → AC 𝐴 = V)
1311, 2, 12sylancr 694 . . 3 (𝜑AC 𝐴 = V)
1410, 13eleqtrrd 2691 . 2 (𝜑 𝑘𝐴 𝑆AC 𝐴)
151, 2, 3, 4, 14ptclsg 21228 1 (𝜑 → ((cls‘𝐽)‘X𝑘𝐴 𝑆) = X𝑘𝐴 ((cls‘𝑅)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540   ciun 4455  cmpt 4643  cfv 5804  Xcixp 7794  AC wacn 8647  CHOICEwac 8821  tcpt 15922  TopOnctopon 20518  clsccl 20632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-ac2 9168
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-fin 7845  df-fi 8200  df-card 8648  df-acn 8651  df-ac 8822  df-topgen 15927  df-pt 15928  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator