Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > restrreld | Structured version Visualization version GIF version |
Description: The restriction of a transitive relation is a transitive relation. (Contributed by Richard Penner, 24-Dec-2019.) |
Ref | Expression |
---|---|
restrreld.r | ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
restrreld.s | ⊢ (𝜑 → 𝑆 = (𝑅 ↾ 𝐴)) |
Ref | Expression |
---|---|
restrreld | ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restrreld.r | . 2 ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) | |
2 | restrreld.s | . . 3 ⊢ (𝜑 → 𝑆 = (𝑅 ↾ 𝐴)) | |
3 | df-res 5050 | . . 3 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × V)) | |
4 | 2, 3 | syl6eq 2660 | . 2 ⊢ (𝜑 → 𝑆 = (𝑅 ∩ (𝐴 × V))) |
5 | 1, 4 | xpintrreld 36977 | 1 ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 Vcvv 3173 ∩ cin 3539 ⊆ wss 3540 × cxp 5036 ↾ cres 5040 ∘ ccom 5042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |