Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbresgVD Structured version   Visualization version   GIF version

Theorem csbresgVD 38153
Description: Virtual deduction proof of csbresgOLD 38077. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbresgOLD 38077 is csbresgVD 38153 without virtual deductions and was automatically derived from csbresgVD 38153.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   𝐴 / 𝑥V = V   )
3:2: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) = (𝐴 / 𝑥𝐶 × V)   )
4:1: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V)   )
5:3,4: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V)   )
6:5: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))   )
7:1: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V))   )
8:6,7: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))   )
9:: (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
10:9: 𝑥(𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
11:1,10: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V))   )
12:8,11: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵𝐶) = ( 𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))   )
13:: (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = ( 𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
14:12,13: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵𝐶) = ( 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)   )
qed:14: (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = ( 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbresgVD (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

Proof of Theorem csbresgVD
StepHypRef Expression
1 idn1 37811 . . . . . . . . 9 (   𝐴𝑉   ▶   𝐴𝑉   )
2 csbconstg 3512 . . . . . . . . 9 (𝐴𝑉𝐴 / 𝑥V = V)
31, 2e1a 37873 . . . . . . . 8 (   𝐴𝑉   ▶   𝐴 / 𝑥V = V   )
4 xpeq2 5053 . . . . . . . 8 (𝐴 / 𝑥V = V → (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) = (𝐴 / 𝑥𝐶 × V))
53, 4e1a 37873 . . . . . . 7 (   𝐴𝑉   ▶   (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) = (𝐴 / 𝑥𝐶 × V)   )
6 csbxpgOLD 38075 . . . . . . . 8 (𝐴𝑉𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V))
71, 6e1a 37873 . . . . . . 7 (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V)   )
8 eqeq2 2621 . . . . . . . 8 ((𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) = (𝐴 / 𝑥𝐶 × V) → (𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) ↔ 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V)))
98biimpd 218 . . . . . . 7 ((𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) = (𝐴 / 𝑥𝐶 × V) → (𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) → 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V)))
105, 7, 9e11 37934 . . . . . 6 (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V)   )
11 ineq2 3770 . . . . . 6 (𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V) → (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V)))
1210, 11e1a 37873 . . . . 5 (   𝐴𝑉   ▶   (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))   )
13 csbingOLD 38076 . . . . . 6 (𝐴𝑉𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)))
141, 13e1a 37873 . . . . 5 (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V))   )
15 eqeq2 2621 . . . . . 6 ((𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V)) → (𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) ↔ 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))))
1615biimpd 218 . . . . 5 ((𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V)) → (𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) → 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))))
1712, 14, 16e11 37934 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))   )
18 df-res 5050 . . . . . 6 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
1918ax-gen 1713 . . . . 5 𝑥(𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
20 csbeq2gOLD 37786 . . . . 5 (𝐴𝑉 → (∀𝑥(𝐵𝐶) = (𝐵 ∩ (𝐶 × V)) → 𝐴 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V))))
211, 19, 20e10 37940 . . . 4 (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V))   )
22 eqeq2 2621 . . . . 5 (𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V)) → (𝐴 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) ↔ 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))))
2322biimpd 218 . . . 4 (𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V)) → (𝐴 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) → 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))))
2417, 21, 23e11 37934 . . 3 (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))   )
25 df-res 5050 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
26 eqeq2 2621 . . . 4 ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V)) → (𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) ↔ 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))))
2726biimprcd 239 . . 3 (𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V)) → ((𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V)) → 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)))
2824, 25, 27e10 37940 . 2 (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)   )
2928in1 37808 1 (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473   = wceq 1475  wcel 1977  Vcvv 3173  csb 3499  cin 3539   × cxp 5036  cres 5040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-in 3547  df-opab 4644  df-xp 5044  df-res 5050  df-vd1 37807
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator