Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbxpgOLD Structured version   Visualization version   GIF version

Theorem csbxpgOLD 38075
 Description: Distribute proper substitution through the Cartesian product of two classes. (Contributed by Alan Sare, 10-Nov-2012.) Obsolete as of 23-Aug-2018. Use csbrn 5514 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
csbxpgOLD (𝐴𝐷𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶))

Proof of Theorem csbxpgOLD
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabgOLD 38072 . . 3 (𝐴𝐷𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧[𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))})
2 sbcexgOLD 37774 . . . . 5 (𝐴𝐷 → ([𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))))
3 sbcexgOLD 37774 . . . . . . 7 (𝐴𝐷 → ([𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))))
4 sbcangOLD 37760 . . . . . . . . 9 (𝐴𝐷 → ([𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶))))
5 sbcg 3470 . . . . . . . . . 10 (𝐴𝐷 → ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ↔ 𝑧 = ⟨𝑤, 𝑦⟩))
6 sbcangOLD 37760 . . . . . . . . . . 11 (𝐴𝐷 → ([𝐴 / 𝑥](𝑤𝐵𝑦𝐶) ↔ ([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶)))
7 sbcel2gOLD 37776 . . . . . . . . . . . 12 (𝐴𝐷 → ([𝐴 / 𝑥]𝑤𝐵𝑤𝐴 / 𝑥𝐵))
8 sbcel2gOLD 37776 . . . . . . . . . . . 12 (𝐴𝐷 → ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶))
97, 8anbi12d 743 . . . . . . . . . . 11 (𝐴𝐷 → (([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
106, 9bitrd 267 . . . . . . . . . 10 (𝐴𝐷 → ([𝐴 / 𝑥](𝑤𝐵𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
115, 10anbi12d 743 . . . . . . . . 9 (𝐴𝐷 → (([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))))
124, 11bitrd 267 . . . . . . . 8 (𝐴𝐷 → ([𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))))
1312exbidv 1837 . . . . . . 7 (𝐴𝐷 → (∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))))
143, 13bitrd 267 . . . . . 6 (𝐴𝐷 → ([𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))))
1514exbidv 1837 . . . . 5 (𝐴𝐷 → (∃𝑤[𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))))
162, 15bitrd 267 . . . 4 (𝐴𝐷 → ([𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))))
1716abbidv 2728 . . 3 (𝐴𝐷 → {𝑧[𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))})
181, 17eqtrd 2644 . 2 (𝐴𝐷𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))})
19 df-xp 5044 . . . 4 (𝐵 × 𝐶) = {⟨𝑤, 𝑦⟩ ∣ (𝑤𝐵𝑦𝐶)}
20 df-opab 4644 . . . 4 {⟨𝑤, 𝑦⟩ ∣ (𝑤𝐵𝑦𝐶)} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
2119, 20eqtri 2632 . . 3 (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
2221csbeq2i 3945 . 2 𝐴 / 𝑥(𝐵 × 𝐶) = 𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
23 df-xp 5044 . . 3 (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) = {⟨𝑤, 𝑦⟩ ∣ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)}
24 df-opab 4644 . . 3 {⟨𝑤, 𝑦⟩ ∣ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}
2523, 24eqtri 2632 . 2 (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}
2618, 22, 253eqtr4g 2669 1 (𝐴𝐷𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  {cab 2596  [wsbc 3402  ⦋csb 3499  ⟨cop 4131  {copab 4642   × cxp 5036 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-sbc 3403  df-csb 3500  df-opab 4644  df-xp 5044 This theorem is referenced by:  csbresgOLD  38077  csbresgVD  38153
 Copyright terms: Public domain W3C validator