HomeHome Metamath Proof Explorer
Theorem List (p. 382 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 38101-38200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremen3lplem2VD 38101* Virtual deduction proof of en3lplem2 8395. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
 
Theoremen3lpVD 38102 Virtual deduction proof of en3lp 8396. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
¬ (𝐴𝐵𝐵𝐶𝐶𝐴)
 
21.30.7  Theorems proved using Virtual Deduction with mmj2 assistance
 
Theoremsimplbi2VD 38103 Virtual deduction proof of simplbi2 653. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
h1:: (𝜑 ↔ (𝜓𝜒))
3:1,?: e0a 38020 ((𝜓𝜒) → 𝜑)
qed:3,?: e0a 38020 (𝜓 → (𝜒𝜑))
The proof of simplbi2 653 was automatically derived from it. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 ↔ (𝜓𝜒))       (𝜓 → (𝜒𝜑))
 
Theorem3ornot23VD 38104 Virtual deduction proof of 3ornot23 37736. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::
(   𝜑 ∧ ¬ 𝜓)   ▶   𝜑 ∧ ¬ 𝜓)   )
2:: (   𝜑 ∧ ¬ 𝜓)   ,   (𝜒𝜑 𝜓)   ▶   (𝜒𝜑𝜓)   )
3:1,?: e1a 37873 (   𝜑 ∧ ¬ 𝜓)   ▶   ¬ 𝜑   )
4:1,?: e1a 37873 (   𝜑 ∧ ¬ 𝜓)   ▶   ¬ 𝜓   )
5:3,4,?: e11 37934 (   𝜑 ∧ ¬ 𝜓)   ▶   ¬ (𝜑 𝜓)   )
6:2,?: e2 37877 (   𝜑 ∧ ¬ 𝜓)   ,   (𝜒𝜑 𝜓)   ▶   (𝜒 ∨ (𝜑𝜓))   )
7:5,6,?: e12 37972 (   𝜑 ∧ ¬ 𝜓)   ,   (𝜒𝜑 𝜓)   ▶   𝜒   )
8:7: (   𝜑 ∧ ¬ 𝜓)   ▶   ((𝜒 𝜑𝜓) → 𝜒)   )
qed:8: ((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜒 𝜑𝜓) → 𝜒))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜒𝜑𝜓) → 𝜒))
 
Theoremorbi1rVD 38105 Virtual deduction proof of orbi1r 37737. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2:: (   (𝜑𝜓)   ,   (𝜒𝜑)    ▶   (𝜒𝜑)   )
3:2,?: e2 37877 (   (𝜑𝜓)   ,   (𝜒𝜑)    ▶   (𝜑𝜒)   )
4:1,3,?: e12 37972 (   (𝜑𝜓)   ,   (𝜒𝜑)    ▶   (𝜓𝜒)   )
5:4,?: e2 37877 (   (𝜑𝜓)   ,   (𝜒𝜑)    ▶   (𝜒𝜓)   )
6:5: (   (𝜑𝜓)   ▶   ((𝜒𝜑) → (𝜒𝜓))   )
7:: (   (𝜑𝜓)   ,   (𝜒𝜓)    ▶   (𝜒𝜓)   )
8:7,?: e2 37877 (   (𝜑𝜓)   ,   (𝜒𝜓)    ▶   (𝜓𝜒)   )
9:1,8,?: e12 37972 (   (𝜑𝜓)   ,   (𝜒𝜓)    ▶   (𝜑𝜒)   )
10:9,?: e2 37877 (   (𝜑𝜓)   ,   (𝜒𝜓)    ▶   (𝜒𝜑)   )
11:10: (   (𝜑𝜓)   ▶   ((𝜒𝜓) → (𝜒𝜑))   )
12:6,11,?: e11 37934 (   (𝜑𝜓)   ▶   ((𝜒 𝜑) ↔ (𝜒𝜓))   )
qed:12: ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
 
Theorembitr3VD 38106 Virtual deduction proof of bitr3 341. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   (𝜑𝜓)   ▶   (𝜑 𝜓)   )
2:1,?: e1a 37873 (   (𝜑𝜓)   ▶   (𝜓 𝜑)   )
3:: (   (𝜑𝜓)   ,   (𝜑𝜒)    ▶   (𝜑𝜒)   )
4:3,?: e2 37877 (   (𝜑𝜓)   ,   (𝜑𝜒)    ▶   (𝜒𝜑)   )
5:2,4,?: e12 37972 (   (𝜑𝜓)   ,   (𝜑𝜒)    ▶   (𝜓𝜒)   )
6:5: (   (𝜑𝜓)   ▶   ((𝜑 𝜒) → (𝜓𝜒))   )
qed:6: ((𝜑𝜓) → ((𝜑𝜒) → (𝜓𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜑𝜒) → (𝜓𝜒)))
 
Theorem3orbi123VD 38107 Virtual deduction proof of 3orbi123 37738. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂))   ▶   ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂))   )
2:1,?: e1a 37873 (   ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂))   ▶   (𝜑𝜓)   )
3:1,?: e1a 37873 (   ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂))   ▶   (𝜒𝜃)   )
4:1,?: e1a 37873 (   ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂))   ▶   (𝜏𝜂)   )
5:2,3,?: e11 37934 (   ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂))   ▶   ((𝜑𝜒) ↔ (𝜓𝜃))   )
6:5,4,?: e11 37934 (   ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂))   ▶   (((𝜑𝜒) ∨ 𝜏) ↔ ((𝜓𝜃) 𝜂))   )
7:?: (((𝜑𝜒) ∨ 𝜏) ↔ (𝜑 𝜒𝜏))
8:6,7,?: e10 37940 (   ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂))   ▶   ((𝜑𝜒𝜏) ↔ ((𝜓𝜃) 𝜂))   )
9:?: (((𝜓𝜃) ∨ 𝜂) ↔ (𝜓𝜃𝜂))
10:8,9,?: e10 37940 (   ((𝜑𝜓) ∧ (𝜒 𝜃) ∧ (𝜏𝜂))   ▶   ((𝜑𝜒𝜏) ↔ (𝜓 𝜃𝜂))   )
qed:10: (((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → ((𝜑𝜒𝜏) ↔ (𝜓𝜃 𝜂)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂)))
 
Theoremsbc3orgVD 38108 Virtual deduction proof of sbc3orgOLD 37763. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:1,?: e1a 37873 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝜑 𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) [𝐴 / 𝑥]𝜒))   )
3:: (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 𝜓𝜒))
32:3: 𝑥(((𝜑𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))
33:1,32,?: e10 37940 (   𝐴𝐵   ▶   [𝐴 / 𝑥](((𝜑 𝜓) ∨ 𝜒) ↔ (𝜑𝜓𝜒))   )
4:1,33,?: e11 37934 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝜑 𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑𝜓𝜒))   )
5:2,4,?: e11 37934 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∨ [𝐴 / 𝑥]𝜒))   )
6:1,?: e1a 37873 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))   )
7:6,?: e1a 37873 (   𝐴𝐵   ▶   (([𝐴 / 𝑥](𝜑 𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) [𝐴 / 𝑥]𝜒))   )
8:5,7,?: e11 37934 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) [𝐴 / 𝑥]𝜒))   )
9:?: ((([𝐴 / 𝑥]𝜑 [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑 [𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
10:8,9,?: e10 37940 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒))   )
qed:10: (𝐴𝐵 → ([𝐴 / 𝑥](𝜑 𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
 
Theorem19.21a3con13vVD 38109* Virtual deduction proof of alrim3con13v 37764. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   (𝜑 → ∀𝑥𝜑)    ▶   (𝜑 → ∀𝑥𝜑)   )
2:: (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓𝜑 𝜒)   ▶   (𝜓𝜑𝜒)   )
3:2,?: e2 37877 (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 𝜑𝜒)   ▶   𝜓   )
4:2,?: e2 37877 (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 𝜑𝜒)   ▶   𝜑   )
5:2,?: e2 37877 (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 𝜑𝜒)   ▶   𝜒   )
6:1,4,?: e12 37972 (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 𝜑𝜒)   ▶   𝑥𝜑   )
7:3,?: e2 37877 (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 𝜑𝜒)   ▶   𝑥𝜓   )
8:5,?: e2 37877 (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 𝜑𝜒)   ▶   𝑥𝜒   )
9:7,6,8,?: e222 37882 (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 𝜑𝜒)   ▶   (∀𝑥𝜓 ∧ ∀𝑥𝜑 ∧ ∀𝑥𝜒)   )
10:9,?: e2 37877 (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 𝜑𝜒)   ▶   𝑥(𝜓𝜑𝜒)   )
11:10:in2 (   (𝜑 → ∀𝑥𝜑)   ▶   ((𝜓 𝜑𝜒) → ∀𝑥(𝜓𝜑𝜒))   )
qed:11:in1 ((𝜑 → ∀𝑥𝜑) → ((𝜓 𝜑𝜒) → ∀𝑥(𝜓𝜑𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → ∀𝑥𝜑) → ((𝜓𝜑𝜒) → ∀𝑥(𝜓𝜑𝜒)))
 
TheoremexbirVD 38110 Virtual deduction proof of exbir 37705. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   ((𝜑𝜓) → (𝜒𝜃))    ▶   ((𝜑𝜓) → (𝜒𝜃))   )
2:: (   ((𝜑𝜓) → (𝜒𝜃))   ,    (𝜑𝜓)   ▶   (𝜑𝜓)   )
3:: (   ((𝜑𝜓) → (𝜒𝜃))   ,    (𝜑𝜓), 𝜃   ▶   𝜃   )
5:1,2,?: e12 37972 (   ((𝜑𝜓) → (𝜒 𝜃)), (𝜑𝜓)   ▶   (𝜒𝜃)   )
6:3,5,?: e32 38006 (   ((𝜑𝜓) → (𝜒 𝜃)), (𝜑𝜓), 𝜃   ▶   𝜒   )
7:6: (   ((𝜑𝜓) → (𝜒 𝜃)), (𝜑𝜓)   ▶   (𝜃𝜒)   )
8:7: (   ((𝜑𝜓) → (𝜒𝜃))    ▶   ((𝜑𝜓) → (𝜃𝜒))   )
9:8,?: e1a 37873 (   ((𝜑𝜓) → (𝜒 𝜃))   ▶   (𝜑 → (𝜓 → (𝜃𝜒)))   )
qed:9: (((𝜑𝜓) → (𝜒𝜃)) → (𝜑 → (𝜓 → (𝜃𝜒))))
(Contributed by Alan Sare, 13-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) → (𝜒𝜃)) → (𝜑 → (𝜓 → (𝜃𝜒))))
 
TheoremexbiriVD 38111 Virtual deduction proof of exbiri 650. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
h1:: ((𝜑𝜓) → (𝜒𝜃))
2:: (   𝜑   ▶   𝜑   )
3:: (   𝜑   ,   𝜓   ▶   𝜓   )
4:: (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜃   )
5:2,1,?: e10 37940 (   𝜑   ▶   (𝜓 → (𝜒𝜃))   )
6:3,5,?: e21 37978 (   𝜑   ,   𝜓   ▶   (𝜒𝜃)   )
7:4,6,?: e32 38006 (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜒   )
8:7: (   𝜑   ,   𝜓   ▶   (𝜃𝜒)   )
9:8: (   𝜑   ▶   (𝜓 → (𝜃𝜒))   )
qed:9: (𝜑 → (𝜓 → (𝜃𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → (𝜒𝜃))       (𝜑 → (𝜓 → (𝜃𝜒)))
 
Theoremrspsbc2VD 38112* Virtual deduction proof of rspsbc2 37765. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   𝐴𝐵   ,   𝐶𝐷   ▶   𝐶𝐷   )
3:: (   𝐴𝐵   ,   𝐶𝐷   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥𝐵𝑦𝐷𝜑   )
4:1,3,?: e13 37996 (   𝐴𝐵   ,   𝐶𝐷   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   [𝐴 / 𝑥]𝑦𝐷𝜑   )
5:1,4,?: e13 37996 (   𝐴𝐵   ,   𝐶𝐷   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑦𝐷[𝐴 / 𝑥]𝜑   )
6:2,5,?: e23 38003 (   𝐴𝐵   ,   𝐶𝐷   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   [𝐶 / 𝑦][𝐴 / 𝑥]𝜑   )
7:6: (   𝐴𝐵   ,   𝐶𝐷   ▶   (∀𝑥𝐵 𝑦𝐷𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑)   )
8:7: (   𝐴𝐵   ▶   (𝐶𝐷 → (∀𝑥𝐵𝑦𝐷𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑))   )
qed:8: (𝐴𝐵 → (𝐶𝐷 → (∀𝑥𝐵𝑦𝐷𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → (𝐶𝐷 → (∀𝑥𝐵𝑦𝐷 𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑)))
 
Theorem3impexpVD 38113 Virtual deduction proof of 3impexp 1281. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   ((𝜑𝜓𝜒) 𝜃)   ▶   ((𝜑𝜓𝜒) → 𝜃)   )
2:: ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
3:1,2,?: e10 37940 (   ((𝜑𝜓𝜒) 𝜃)   ▶   (((𝜑𝜓) ∧ 𝜒) → 𝜃)   )
4:3,?: e1a 37873 (   ((𝜑𝜓𝜒) 𝜃)   ▶   ((𝜑𝜓) → (𝜒𝜃))   )
5:4,?: e1a 37873 (   ((𝜑𝜓𝜒) 𝜃)   ▶   (𝜑 → (𝜓 → (𝜒𝜃)))   )
6:5: (((𝜑𝜓𝜒) → 𝜃) → (𝜑 → (𝜓 → (𝜒𝜃))))
7:: (   (𝜑 → (𝜓 → (𝜒 𝜃)))   ▶   (𝜑 → (𝜓 → (𝜒𝜃)))   )
8:7,?: e1a 37873 (   (𝜑 → (𝜓 → (𝜒 𝜃)))   ▶   ((𝜑𝜓) → (𝜒𝜃))   )
9:8,?: e1a 37873 (   (𝜑 → (𝜓 → (𝜒 𝜃)))   ▶   (((𝜑𝜓) ∧ 𝜒) → 𝜃)   )
10:2,9,?: e01 37937 (   (𝜑 → (𝜓 → (𝜒 𝜃)))   ▶   ((𝜑𝜓𝜒) → 𝜃)   )
11:10: ((𝜑 → (𝜓 → (𝜒 𝜃))) → ((𝜑𝜓𝜒) → 𝜃))
qed:6,11,?: e00 38016 (((𝜑𝜓𝜒) 𝜃) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
 
Theorem3impexpbicomVD 38114 Virtual deduction proof of 3impexpbicom 37706. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   ((𝜑𝜓𝜒) → (𝜃𝜏))   ▶   ((𝜑𝜓𝜒) → (𝜃𝜏))   )
2:: ((𝜃𝜏) ↔ (𝜏 𝜃))
3:1,2,?: e10 37940 (   ((𝜑𝜓𝜒) → (𝜃𝜏))   ▶   ((𝜑𝜓𝜒) → (𝜏𝜃))   )
4:3,?: e1a 37873 (   ((𝜑𝜓𝜒) → (𝜃𝜏))   ▶   (𝜑 → (𝜓 → (𝜒 → (𝜏 𝜃))))   )
5:4: (((𝜑𝜓𝜒) → (𝜃𝜏)) → (𝜑 → (𝜓 → (𝜒 → (𝜏 𝜃)))))
6:: (   (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))   ▶   (𝜑 → (𝜓 → (𝜒 → (𝜏 𝜃))))   )
7:6,?: e1a 37873 (   (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))   ▶   ((𝜑𝜓𝜒) → (𝜏 𝜃))   )
8:7,2,?: e10 37940 (   (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))   ▶   ((𝜑𝜓𝜒) → (𝜃 𝜏))   )
9:8: ((𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))) → ((𝜑𝜓𝜒) → (𝜃 𝜏)))
qed:5,9,?: e00 38016 (((𝜑𝜓𝜒) → (𝜃𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 𝜃)))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓𝜒) → (𝜃𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))))
 
Theorem3impexpbicomiVD 38115 Virtual deduction proof of 3impexpbicomi 37707. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
h1:: ((𝜑𝜓𝜒) → (𝜃 𝜏))
qed:1,?: e0a 38020 (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓𝜒) → (𝜃𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))
 
Theoremsbcel1gvOLD 38116* Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 17-Aug-2018. Use sbcel1v 3462 instead. (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵))
 
TheoremsbcoreleleqVD 38117* Virtual deduction proof of sbcoreleleq 37766. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:1,?: e1a 37873 (   𝐴𝐵   ▶   ([𝐴 / 𝑦]𝑥 𝑦𝑥𝐴)   )
3:1,?: e1a 37873 (   𝐴𝐵   ▶   ([𝐴 / 𝑦]𝑦 𝑥𝐴𝑥)   )
4:1,?: e1a 37873 (   𝐴𝐵   ▶   ([𝐴 / 𝑦]𝑥 = 𝑦𝑥 = 𝐴)   )
5:2,3,4,?: e111 37920 (   𝐴𝐵   ▶   ((𝑥𝐴 𝐴𝑥𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥𝑦[𝐴 / 𝑦]𝑦𝑥 [𝐴 / 𝑦]𝑥 = 𝑦))   )
6:1,?: e1a 37873 (   𝐴𝐵    ▶   ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥 𝑦[𝐴 / 𝑦]𝑦𝑥[𝐴 / 𝑦]𝑥 = 𝑦))   )
7:5,6: e11 37934 (   𝐴𝐵   ▶   ([𝐴 / 𝑦](𝑥 𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴))   )
qed:7: (𝐴𝐵 → ([𝐴 / 𝑦](𝑥𝑦 𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴)))
 
Theoremhbra2VD 38118* Virtual deduction proof of nfra2 2930. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (∀𝑦𝐵𝑥𝐴𝜑 𝑦𝑦𝐵𝑥𝐴𝜑)
2:: (∀𝑥𝐴𝑦𝐵𝜑 𝑦𝐵𝑥𝐴𝜑)
3:1,2,?: e00 38016 (∀𝑥𝐴𝑦𝐵𝜑 𝑦𝑦𝐵𝑥𝐴𝜑)
4:2: 𝑦(∀𝑥𝐴𝑦𝐵𝜑 𝑦𝐵𝑥𝐴𝜑)
5:4,?: e0a 38020 (∀𝑦𝑥𝐴𝑦𝐵𝜑 𝑦𝑦𝐵𝑥𝐴𝜑)
qed:3,5,?: e00 38016 (∀𝑥𝐴𝑦𝐵𝜑 𝑦𝑥𝐴𝑦𝐵𝜑)
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝑥𝐴𝑦𝐵 𝜑)
 
TheoremtratrbVD 38119* Virtual deduction proof of tratrb 37767. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)    ▶   (Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) 𝐵𝐴)   )
2:1,?: e1a 37873 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   Tr 𝐴   )
3:1,?: e1a 37873 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)    ▶   𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
4:1,?: e1a 37873 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝐵𝐴   )
5:: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   (𝑥𝑦𝑦𝐵)   )
6:5,?: e2 37877 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑥𝑦   )
7:5,?: e2 37877 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑦𝐵   )
8:2,7,4,?: e121 37902 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑦𝐴   )
9:2,6,8,?: e122 37899 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑥𝐴   )
10:: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝐵𝑥   ▶   𝐵𝑥   )
11:6,7,10,?: e223 37881 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝐵𝑥   ▶   (𝑥𝑦𝑦𝐵𝐵𝑥)   )
12:11: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   (𝐵𝑥 → (𝑥𝑦𝑦𝐵𝐵𝑥))   )
13:: ¬ (𝑥𝑦𝑦𝐵 𝐵𝑥)
14:12,13,?: e20 37975 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   ¬ 𝐵𝑥   )
15:: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝑥 = 𝐵   ▶   𝑥 = 𝐵   )
16:7,15,?: e23 38003 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝑥 = 𝐵   ▶   𝑦𝑥   )
17:6,16,?: e23 38003 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵), 𝑥 = 𝐵   ▶   (𝑥𝑦𝑦𝑥)   )
18:17: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   (𝑥 = 𝐵 → (𝑥𝑦𝑦𝑥))   )
19:: ¬ (𝑥𝑦𝑦𝑥)
20:18,19,?: e20 37975 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   ¬ 𝑥 = 𝐵   )
21:3,?: e1a 37873 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝑦𝐴 𝑥𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
22:21,9,4,?: e121 37902 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   [𝑥 / 𝑥][𝐵 / 𝑦](𝑥𝑦𝑦𝑥 𝑥 = 𝑦)   )
23:22,?: e2 37877 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   [𝐵 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
24:4,23,?: e12 37972 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   (𝑥𝐵𝐵𝑥𝑥 = 𝐵)   )
25:14,20,24,?: e222 37882 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴), (𝑥𝑦 𝑦𝐵)   ▶   𝑥𝐵   )
26:25: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   ((𝑥𝑦 𝑦𝐵) → 𝑥𝐵)   )
27:: (∀𝑥𝐴𝑦𝐴(𝑥𝑦 𝑦𝑥𝑥 = 𝑦) → ∀𝑦𝑥𝐴𝑦𝐴(𝑥𝑦 𝑦𝑥𝑥 = 𝑦))
28:27,?: e0a 38020 ((Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑦(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥 𝑥 = 𝑦) ∧ 𝐵𝐴))
29:28,26: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)    ▶   𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵)   )
30:: (∀𝑥𝐴𝑦𝐴(𝑥𝑦 𝑦𝑥𝑥 = 𝑦) → ∀𝑥𝑥𝐴𝑦𝐴(𝑥𝑦 𝑦𝑥𝑥 = 𝑦))
31:30,?: e0a 38020 ((Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → ∀𝑥(Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴))
32:31,29: (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   𝑥 𝑦((𝑥𝑦𝑦𝐵) → 𝑥𝐵)   )
33:32,?: e1a 37873 (   (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴)   ▶   Tr 𝐵   )
qed:33: ((Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
 
Theoremal2imVD 38120 Virtual deduction proof of al2im 1732. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   𝑥(𝜑 → (𝜓𝜒))    ▶   𝑥(𝜑 → (𝜓𝜒))   )
2:1,?: e1a 37873 (   𝑥(𝜑 → (𝜓𝜒))    ▶   (∀𝑥𝜑 → ∀𝑥(𝜓𝜒))   )
3:: (∀𝑥(𝜓𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒))
4:2,3,?: e10 37940 (   𝑥(𝜑 → (𝜓𝜒))    ▶   (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))   )
qed:4: (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
 
Theoremsyl5impVD 38121 Virtual deduction proof of syl5imp 37739. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: (   (𝜑 → (𝜓𝜒))   ▶   (𝜑 → (𝜓𝜒))   )
2:1,?: e1a 37873 (   (𝜑 → (𝜓𝜒))   ▶   (𝜓 → (𝜑𝜒))   )
3:: (   (𝜑 → (𝜓𝜒))   ,   (𝜃 𝜓)   ▶   (𝜃𝜓)   )
4:3,2,?: e21 37978 (   (𝜑 → (𝜓𝜒))   ,   (𝜃 𝜓)   ▶   (𝜃 → (𝜑𝜒))   )
5:4,?: e2 37877 (   (𝜑 → (𝜓𝜒))   ,   (𝜃 𝜓)   ▶   (𝜑 → (𝜃𝜒))   )
6:5: (   (𝜑 → (𝜓𝜒))   ▶   ((𝜃 𝜓) → (𝜑 → (𝜃𝜒)))   )
qed:6: ((𝜑 → (𝜓𝜒)) → ((𝜃 𝜓) → (𝜑 → (𝜃𝜒))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜓𝜒)) → ((𝜃𝜓) → (𝜑 → (𝜃𝜒))))
 
TheoremidiVD 38122 Virtual deduction proof of idiALT 37704. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
h1:: 𝜑
qed:1,?: e0a 38020 𝜑
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑       𝜑
 
TheoremancomstVD 38123 Closed form of ancoms 468. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: ((𝜑𝜓) ↔ (𝜓𝜑))
qed:1,?: e0a 38020 (((𝜑𝜓) → 𝜒) ↔ ((𝜓 𝜑) → 𝜒))
The proof of ancomst 467 is derived automatically from it. (Contributed by Alan Sare, 25-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) → 𝜒) ↔ ((𝜓𝜑) → 𝜒))
 
Theoremssralv2VD 38124* Quantification restricted to a subclass for two quantifiers. ssralv 3629 for two quantifiers. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ssralv2 37758 is ssralv2VD 38124 without virtual deductions and was automatically derived from ssralv2VD 38124.
1:: (   (𝐴𝐵𝐶𝐷)   ▶   (𝐴𝐵 𝐶𝐷)   )
2:: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥𝐵𝑦𝐷𝜑   )
3:1: (   (𝐴𝐵𝐶𝐷)   ▶   𝐴𝐵   )
4:3,2: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥𝐴𝑦𝐷𝜑   )
5:4: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥(𝑥𝐴 → ∀𝑦𝐷𝜑)   )
6:5: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   (𝑥𝐴 → ∀𝑦𝐷𝜑)   )
7:: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑, 𝑥𝐴   ▶   𝑥𝐴   )
8:7,6: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑, 𝑥𝐴   ▶   𝑦𝐷𝜑   )
9:1: (   (𝐴𝐵𝐶𝐷)   ▶   𝐶𝐷   )
10:9,8: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑, 𝑥𝐴   ▶   𝑦𝐶𝜑   )
11:10: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   (𝑥𝐴 → ∀𝑦𝐶𝜑)   )
12:: ((𝐴𝐵𝐶𝐷) → ∀𝑥(𝐴𝐵𝐶𝐷))
13:: (∀𝑥𝐵𝑦𝐷𝜑 → ∀𝑥𝑥𝐵𝑦𝐷𝜑)
14:12,13,11: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥(𝑥𝐴 → ∀𝑦𝐶𝜑)   )
15:14: (   (𝐴𝐵𝐶𝐷)   ,   𝑥𝐵 𝑦𝐷𝜑   ▶   𝑥𝐴𝑦𝐶𝜑   )
16:15: (   (𝐴𝐵𝐶𝐷)    ▶   (∀𝑥𝐵𝑦𝐷𝜑 → ∀𝑥𝐴𝑦𝐶𝜑)   )
qed:16: ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷𝜑 → ∀𝑥𝐴𝑦𝐶𝜑))
(Contributed by Alan Sare, 10-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))
 
TheoremordelordALTVD 38125 An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 5662 using the Axiom of Regularity indirectly through dford2 8400. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that E Fr 𝐴 because this is inferred by the Axiom of Regularity. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ordelordALT 37768 is ordelordALTVD 38125 without virtual deductions and was automatically derived from ordelordALTVD 38125 using the tools program translate..without..overwriting.cmd and Metamath's minimize command.
1:: (   (Ord 𝐴𝐵𝐴)   ▶   (Ord 𝐴 𝐵𝐴)   )
2:1: (   (Ord 𝐴𝐵𝐴)   ▶   Ord 𝐴   )
3:1: (   (Ord 𝐴𝐵𝐴)   ▶   𝐵𝐴   )
4:2: (   (Ord 𝐴𝐵𝐴)   ▶   Tr 𝐴   )
5:2: (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐴 𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥)   )
6:4,3: (   (Ord 𝐴𝐵𝐴)   ▶   𝐵𝐴   )
7:6,6,5: (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐵 𝑦𝐵(𝑥𝑦𝑥 = 𝑦𝑦𝑥)   )
8:: ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
9:8: 𝑦((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
10:9: 𝑦𝐴((𝑥𝑦𝑥 = 𝑦 𝑦𝑥) ↔ (𝑥𝑦𝑦𝑥𝑥 = 𝑦))
11:10: (∀𝑦𝐴(𝑥𝑦𝑥 = 𝑦 𝑦𝑥) ↔ ∀𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦))
12:11: 𝑥(∀𝑦𝐴(𝑥𝑦𝑥 = 𝑦 𝑦𝑥) ↔ ∀𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦))
13:12: 𝑥𝐴(∀𝑦𝐴(𝑥𝑦 𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦))
14:13: (∀𝑥𝐴𝑦𝐴(𝑥𝑦 𝑥 = 𝑦𝑦𝑥) ↔ ∀𝑥𝐴𝑦𝐴(𝑥𝑦𝑦𝑥 𝑥 = 𝑦))
15:14,5: (   (Ord 𝐴𝐵𝐴)   ▶   𝑥𝐴 𝑦𝐴(𝑥𝑦𝑦𝑥𝑥 = 𝑦)   )
16:4,15,3: (   (Ord 𝐴𝐵𝐴)   ▶   Tr 𝐵   )
17:16,7: (   (Ord 𝐴𝐵𝐴)   ▶   Ord 𝐵   )
qed:17: ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
(Contributed by Alan Sare, 12-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((Ord 𝐴𝐵𝐴) → Ord 𝐵)
 
TheoremequncomVD 38126 If a class equals the union of two other classes, then it equals the union of those two classes commuted. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. equncom 3720 is equncomVD 38126 without virtual deductions and was automatically derived from equncomVD 38126.
1:: (   𝐴 = (𝐵𝐶)   ▶   𝐴 = (𝐵𝐶)   )
2:: (𝐵𝐶) = (𝐶𝐵)
3:1,2: (   𝐴 = (𝐵𝐶)   ▶   𝐴 = (𝐶𝐵)   )
4:3: (𝐴 = (𝐵𝐶) → 𝐴 = (𝐶𝐵))
5:: (   𝐴 = (𝐶𝐵)   ▶   𝐴 = (𝐶𝐵)   )
6:5,2: (   𝐴 = (𝐶𝐵)   ▶   𝐴 = (𝐵𝐶)   )
7:6: (𝐴 = (𝐶𝐵) → 𝐴 = (𝐵𝐶))
8:4,7: (𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))
(Contributed by Alan Sare, 17-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))
 
TheoremequncomiVD 38127 Inference form of equncom 3720. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. equncomi 3721 is equncomiVD 38127 without virtual deductions and was automatically derived from equncomiVD 38127.
h1:: 𝐴 = (𝐵𝐶)
qed:1: 𝐴 = (𝐶𝐵)
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 = (𝐵𝐶)       𝐴 = (𝐶𝐵)
 
TheoremsucidALTVD 38128 A set belongs to its successor. Alternate proof of sucid 5721. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sucidALT 38129 is sucidALTVD 38128 without virtual deductions and was automatically derived from sucidALTVD 38128. This proof illustrates that completeusersproof.cmd will generate a Metamath proof from any User's Proof which is "conventional" in the sense that no step is a virtual deduction, provided that all necessary unification theorems and transformation deductions are in set.mm. completeusersproof.cmd automatically converts such a conventional proof into a Virtual Deduction proof for which each step happens to be a 0-virtual hypothesis virtual deduction. The user does not need to search for reference theorem labels or deduction labels nor does he(she) need to use theorems and deductions which unify with reference theorems and deductions in set.mm. All that is necessary is that each theorem or deduction of the User's Proof unifies with some reference theorem or deduction in set.mm or is a semantic variation of some theorem or deduction which unifies with some reference theorem or deduction in set.mm. The definition of "semantic variation" has not been precisely defined. If it is obvious that a theorem or deduction has the same meaning as another theorem or deduction, then it is a semantic variation of the latter theorem or deduction. For example, step 4 of the User's Proof is a semantic variation of the definition (axiom) suc 𝐴 = (𝐴 ∪ {𝐴}), which unifies with df-suc 5646, a reference definition (axiom) in set.mm. Also, a theorem or deduction is said to be a semantic variation of another theorem or deduction if it is obvious upon cursory inspection that it has the same meaning as a weaker form of the latter theorem or deduction. For example, the deduction Ord 𝐴 infers 𝑥𝐴𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥) is a semantic variation of the theorem (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥))), which unifies with the set.mm reference definition (axiom) dford2 8400.
h1:: 𝐴 ∈ V
2:1: 𝐴 ∈ {𝐴}
3:2: 𝐴 ∈ ({𝐴} ∪ 𝐴)
4:: suc 𝐴 = ({𝐴} ∪ 𝐴)
qed:3,4: 𝐴 ∈ suc 𝐴
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V       𝐴 ∈ suc 𝐴
 
TheoremsucidALT 38129 A set belongs to its successor. This proof was automatically derived from sucidALTVD 38128 using translatewithout_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V       𝐴 ∈ suc 𝐴
 
TheoremsucidVD 38130 A set belongs to its successor. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sucid 5721 is sucidVD 38130 without virtual deductions and was automatically derived from sucidVD 38130.
h1:: 𝐴 ∈ V
2:1: 𝐴 ∈ {𝐴}
3:2: 𝐴 ∈ (𝐴 ∪ {𝐴})
4:: suc 𝐴 = (𝐴 ∪ {𝐴})
qed:3,4: 𝐴 ∈ suc 𝐴
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V       𝐴 ∈ suc 𝐴
 
Theoremimbi12VD 38131 Implication form of imbi12i 339. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi12 335 is imbi12VD 38131 without virtual deductions and was automatically derived from imbi12VD 38131.
1:: (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2:: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   (𝜒𝜃)   )
3:: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜑 𝜒)   ▶   (𝜑𝜒)   )
4:1,3: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜑 𝜒)   ▶   (𝜓𝜒)   )
5:2,4: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜑 𝜒)   ▶   (𝜓𝜃)   )
6:5: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   ((𝜑𝜒) → (𝜓𝜃))   )
7:: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜓 𝜃)   ▶   (𝜓𝜃)   )
8:1,7: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜓 𝜃)   ▶   (𝜑𝜃)   )
9:2,8: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜓 𝜃)   ▶   (𝜑𝜒)   )
10:9: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   ((𝜓𝜃) → (𝜑𝜒))   )
11:6,10: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   ((𝜑𝜒) ↔ (𝜓𝜃))   )
12:11: (   (𝜑𝜓)   ▶   ((𝜒𝜃) → ((𝜑𝜒) ↔ (𝜓𝜃)))   )
qed:12: ((𝜑𝜓) → ((𝜒𝜃) → ((𝜑𝜒) ↔ (𝜓𝜃))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜒𝜃) → ((𝜑𝜒) ↔ (𝜓𝜃))))
 
Theoremimbi13VD 38132 Join three logical equivalences to form equivalence of implications. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi13 37747 is imbi13VD 38132 without virtual deductions and was automatically derived from imbi13VD 38132.
1:: (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2:: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   (𝜒𝜃)   )
3:: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏 𝜂)   ▶   (𝜏𝜂)   )
4:2,3: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏 𝜂)   ▶   ((𝜒𝜏) ↔ (𝜃𝜂))   )
5:1,4: (   (𝜑𝜓)   ,   (𝜒𝜃)   ,   (𝜏 𝜂)   ▶   ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂)))   )
6:5: (   (𝜑𝜓)   ,   (𝜒𝜃)    ▶   ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃 𝜂))))   )
7:6: (   (𝜑𝜓)   ▶   ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃 𝜂)))))   )
qed:7: ((𝜑𝜓) → ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃 𝜂))))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂))))))
 
Theoremsbcim2gVD 38133 Distribution of class substitution over a left-nested implication. Similar to sbcimg 3444. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcim2g 37769 is sbcim2gVD 38133 without virtual deductions and was automatically derived from sbcim2gVD 38133.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   𝐴𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 𝜒))   ▶   [𝐴 / 𝑥](𝜑 → (𝜓𝜒))   )
3:1,2: (   𝐴𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 𝜒))   ▶   ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))   )
4:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   )
5:3,4: (   𝐴𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒))   )
6:5: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓 𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒)))   )
7:: (   𝐴𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   )
8:4,7: (   𝐴𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   ▶   ([𝐴 / 𝑥]𝜑 [𝐴 / 𝑥](𝜓𝜒))   )
9:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓 𝜒)) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)))   )
10:8,9: (   𝐴𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))   ▶   [𝐴 / 𝑥](𝜑 → (𝜓 𝜒))   )
11:10: (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓 𝜒)))   )
12:6,11: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒)))   )
qed:12: (𝐴𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 [𝐴 / 𝑥]𝜒))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
 
TheoremsbcbiVD 38134 Implication form of sbcbiiOLD 37762. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcbi 37770 is sbcbiVD 38134 without virtual deductions and was automatically derived from sbcbiVD 38134.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   𝐴𝐵   ,   𝑥(𝜑𝜓)    ▶   𝑥(𝜑𝜓)   )
3:1,2: (   𝐴𝐵   ,   𝑥(𝜑𝜓)    ▶   [𝐴 / 𝑥](𝜑𝜓)   )
4:1,3: (   𝐴𝐵   ,   𝑥(𝜑𝜓)    ▶   ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)   )
5:4: (   𝐴𝐵   ▶   (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))   )
qed:5: (𝐴𝐵 → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
 
TheoremtrsbcVD 38135* Formula-building inference rule for class substitution, substituting a class variable for the setvar variable of the transitivity predicate. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. trsbc 37771 is trsbcVD 38135 without virtual deductions and was automatically derived from trsbcVD 38135.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑦 𝑧𝑦)   )
3:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝑥 𝑦𝐴)   )
4:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑥 𝑧𝐴)   )
5:1,2,3,4: (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑧𝑦 → ([𝐴 / 𝑥]𝑦𝑥[𝐴 / 𝑥]𝑧𝑥)) ↔ (𝑧𝑦 → (𝑦𝐴𝑧𝐴)))   )
6:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ([𝐴 / 𝑥]𝑧𝑦 ([𝐴 / 𝑥]𝑦𝑥[𝐴 / 𝑥]𝑧𝑥)))   )
7:5,6: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ (𝑧𝑦 → (𝑦𝐴 𝑧𝐴)))   )
8:: ((𝑧𝑦 → (𝑦𝐴 𝑧𝐴)) ↔ ((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
9:7,8: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
10:: ((𝑧𝑦 → (𝑦𝑥 𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
11:10: 𝑥((𝑧𝑦 → (𝑦𝑥 𝑧𝑥)) ↔ ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
12:1,11: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑧𝑦 → (𝑦𝑥𝑧𝑥)) ↔ [𝐴 / 𝑥]((𝑧𝑦𝑦𝑥) 𝑧𝑥))   )
13:9,12: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]((𝑧𝑦 𝑦𝑥) → 𝑧𝑥) ↔ ((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
14:13: (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥]((𝑧 𝑦𝑦𝑥) → 𝑧𝑥) ↔ ((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
15:14: (   𝐴𝐵   ▶   (∀𝑦[𝐴 / 𝑥]((𝑧 𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
16:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦((𝑧 𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧𝑦 𝑦𝑥) → 𝑧𝑥))   )
17:15,16: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦((𝑧 𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
18:17: (   𝐴𝐵   ▶   𝑧([𝐴 / 𝑥]𝑦(( 𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑦((𝑧𝑦𝑦𝐴) 𝑧𝐴))   )
19:18: (   𝐴𝐵   ▶   (∀𝑧[𝐴 / 𝑥]𝑦(( 𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧𝑦((𝑧𝑦 𝑦𝐴) → 𝑧𝐴))   )
20:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑦(( 𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧[𝐴 / 𝑥]𝑦((𝑧 𝑦𝑦𝑥) → 𝑧𝑥))   )
21:19,20: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑦(( 𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ ∀𝑧𝑦((𝑧𝑦 𝑦𝐴) → 𝑧𝐴))   )
22:: (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦 𝑦𝐴) → 𝑧𝐴))
23:21,22: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑧𝑦(( 𝑧𝑦𝑦𝑥) → 𝑧𝑥) ↔ Tr 𝐴)   )
24:: (Tr 𝑥 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 𝑥) → 𝑧𝑥))
25:24: 𝑥(Tr 𝑥 ↔ ∀𝑧𝑦((𝑧𝑦 𝑦𝑥) → 𝑧𝑥))
26:1,25: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]Tr 𝑥 [𝐴 / 𝑥]𝑧𝑦((𝑧𝑦𝑦𝑥) → 𝑧𝑥))   )
27:23,26: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴)   )
qed:27: (𝐴𝐵 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴))
 
TheoremtruniALTVD 38136* The union of a class of transitive sets is transitive. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. truniALT 37772 is truniALTVD 38136 without virtual deductions and was automatically derived from truniALTVD 38136.
1:: (   𝑥𝐴Tr 𝑥   ▶   𝑥𝐴 Tr 𝑥   )
2:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   (𝑧𝑦𝑦 𝐴)   )
3:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑧𝑦   )
4:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑦 𝐴   )
5:4: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑞(𝑦𝑞𝑞𝐴)   )
6:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   (𝑦𝑞𝑞𝐴)   )
7:6: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   𝑦𝑞   )
8:6: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   𝑞𝐴   )
9:1,8: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   [𝑞 / 𝑥]Tr 𝑥   )
10:8,9: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   Tr 𝑞   )
11:3,7,10: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   𝑧𝑞   )
12:11,8: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴), (𝑦𝑞𝑞𝐴)   ▶   𝑧 𝐴   )
13:12: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   ((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
14:13: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑞((𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
15:14: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   (∃𝑞(𝑦𝑞𝑞𝐴) → 𝑧 𝐴)   )
16:5,15: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦 𝑦 𝐴)   ▶   𝑧 𝐴   )
17:16: (   𝑥𝐴Tr 𝑥   ▶   ((𝑧𝑦 𝑦 𝐴) → 𝑧 𝐴)   )
18:17: (   𝑥𝐴Tr 𝑥    ▶   𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
19:18: (   𝑥𝐴Tr 𝑥   ▶   Tr 𝐴   )
qed:19: (∀𝑥𝐴Tr 𝑥 → Tr 𝐴)
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
 
Theoremee33VD 38137 Non-virtual deduction form of e33 37982. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ee33 37748 is ee33VD 38137 without virtual deductions and was automatically derived from ee33VD 38137.
h1:: (𝜑 → (𝜓 → (𝜒𝜃)))
h2:: (𝜑 → (𝜓 → (𝜒𝜏)))
h3:: (𝜃 → (𝜏𝜂))
4:1,3: (𝜑 → (𝜓 → (𝜒 → (𝜏𝜂))))
5:4: (𝜏 → (𝜑 → (𝜓 → (𝜒𝜂))))
6:2,5: (𝜑 → (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂))))))
7:6: (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒 𝜂)))))
8:7: (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂))))
qed:8: (𝜑 → (𝜓 → (𝜒𝜂)))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜒𝜃)))    &   (𝜑 → (𝜓 → (𝜒𝜏)))    &   (𝜃 → (𝜏𝜂))       (𝜑 → (𝜓 → (𝜒𝜂)))
 
TheoremtrintALTVD 38138* The intersection of a class of transitive sets is transitive. Virtual deduction proof of trintALT 38139. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. trintALT 38139 is trintALTVD 38138 without virtual deductions and was automatically derived from trintALTVD 38138.
1:: (   𝑥𝐴Tr 𝑥   ▶   𝑥𝐴Tr 𝑥   )
2:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑧𝑦𝑦 𝐴)   )
3:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧𝑦   )
4:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑦 𝐴   )
5:4: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞𝐴𝑦𝑞   )
6:5: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑞𝐴𝑦𝑞)   )
7:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   𝑞𝐴   )
8:7,6: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   𝑦𝑞   )
9:7,1: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   [𝑞 / 𝑥]Tr 𝑥   )
10:7,9: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   Tr 𝑞   )
11:10,3,8: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   𝑧𝑞   )
12:11: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑞𝐴𝑧𝑞)   )
13:12: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞(𝑞𝐴𝑧𝑞)   )
14:13: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞𝐴𝑧𝑞   )
15:3,14: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧 𝐴   )
16:15: (   𝑥𝐴Tr 𝑥   ▶   ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
17:16: (   𝑥𝐴Tr 𝑥   ▶   𝑧𝑦((𝑧 𝑦𝑦 𝐴) → 𝑧 𝐴)   )
18:17: (   𝑥𝐴Tr 𝑥   ▶   Tr 𝐴   )
qed:18: (∀𝑥𝐴Tr 𝑥 → Tr 𝐴)
(Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
 
TheoremtrintALT 38139* The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. trintALT 38139 is an alternate proof of trint 4696. trintALT 38139 is trintALTVD 38138 without virtual deductions and was automatically derived from trintALTVD 38138 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
 
Theoremundif3VD 38140 The first equality of Exercise 13 of [TakeutiZaring] p. 22. Virtual deduction proof of undif3 3847. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. undif3 3847 is undif3VD 38140 without virtual deductions and was automatically derived from undif3VD 38140.
1:: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴 𝑥 ∈ (𝐵𝐶)))
2:: (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵 ∧ ¬ 𝑥 𝐶))
3:2: ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥 𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
4:1,3: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
5:: (   𝑥𝐴   ▶   𝑥𝐴   )
6:5: (   𝑥𝐴   ▶   (𝑥𝐴𝑥𝐵)   )
7:5: (   𝑥𝐴   ▶   𝑥𝐶𝑥𝐴)   )
8:6,7: (   𝑥𝐴   ▶   ((𝑥𝐴𝑥𝐵) ∧ 𝑥𝐶𝑥𝐴))   )
9:8: (𝑥𝐴 → ((𝑥𝐴𝑥𝐵) ∧ ( ¬ 𝑥𝐶𝑥𝐴)))
10:: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   )
11:10: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   𝑥𝐵   )
12:10: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   ¬ 𝑥𝐶    )
13:11: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 𝑥𝐵)   )
14:12: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   𝑥 𝐶𝑥𝐴)   )
15:13,14: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   ((𝑥 𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴))   )
16:15: ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → ((𝑥𝐴 𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
17:9,16: ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
18:: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   )
19:18: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   𝑥𝐴   )
20:18: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   ¬ 𝑥𝐶    )
21:18: (   (𝑥𝐴 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
22:21: ((𝑥𝐴 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
23:: (   (𝑥𝐴𝑥𝐴)   ▶   (𝑥𝐴 𝑥𝐴)   )
24:23: (   (𝑥𝐴𝑥𝐴)   ▶   𝑥𝐴   )
25:24: (   (𝑥𝐴𝑥𝐴)   ▶   (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
26:25: ((𝑥𝐴𝑥𝐴) → (𝑥𝐴 ∨ ( 𝑥𝐵 ∧ ¬ 𝑥𝐶)))
27:10: (   (𝑥𝐵 ∧ ¬ 𝑥𝐶)   ▶   (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
28:27: ((𝑥𝐵 ∧ ¬ 𝑥𝐶) → (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
29:: (   (𝑥𝐵𝑥𝐴)   ▶   (𝑥𝐵 𝑥𝐴)   )
30:29: (   (𝑥𝐵𝑥𝐴)   ▶   𝑥𝐴   )
31:30: (   (𝑥𝐵𝑥𝐴)   ▶   (𝑥𝐴 (𝑥𝐵 ∧ ¬ 𝑥𝐶))   )
32:31: ((𝑥𝐵𝑥𝐴) → (𝑥𝐴 ∨ ( 𝑥𝐵 ∧ ¬ 𝑥𝐶)))
33:22,26: (((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐴 𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
34:28,32: (((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵 𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
35:33,34: ((((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥 𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
36:: ((((𝑥𝐴 ∧ ¬ 𝑥𝐶) ∨ (𝑥 𝐴𝑥𝐴)) ∨ ((𝑥𝐵 ∧ ¬ 𝑥𝐶) ∨ (𝑥𝐵𝑥𝐴))) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
37:36,35: (((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶 𝑥𝐴)) → (𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)))
38:17,37: ((𝑥𝐴 ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
39:: (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥 𝐴))
40:39: 𝑥 ∈ (𝐶𝐴) ↔ ¬ (𝑥𝐶 ¬ 𝑥𝐴))
41:: (¬ (𝑥𝐶 ∧ ¬ 𝑥𝐴) ↔ (¬ 𝑥 𝐶𝑥𝐴))
42:40,41: 𝑥 ∈ (𝐶𝐴) ↔ (¬ 𝑥𝐶𝑥 𝐴))
43:: (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵 ))
44:43,42: ((𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴) ) ↔ ((𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
45:: (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ ( 𝑥 ∈ (𝐴𝐵) ∧ ¬ 𝑥 ∈ (𝐶𝐴)))
46:45,44: (𝑥 ∈ ((𝐴𝐵) ∖ (𝐶𝐴)) ↔ ( (𝑥𝐴𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
47:4,38: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ ((𝑥𝐴 𝑥𝐵) ∧ (¬ 𝑥𝐶𝑥𝐴)))
48:46,47: (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ∈ ((𝐴 𝐵) ∖ (𝐶𝐴)))
49:48: 𝑥(𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ 𝑥 ((𝐴𝐵) ∖ (𝐶𝐴)))
qed:49: (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶 𝐴))
(Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴))
 
TheoremsbcssgVD 38141 Virtual deduction proof of sbcssg 4035. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcssg 4035 is sbcssgVD 38141 without virtual deductions and was automatically derived from sbcssgVD 38141.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦 𝐴 / 𝑥𝐶)   )
3:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦 𝐴 / 𝑥𝐷)   )
4:2,3: (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶 [𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷 ))   )
5:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
6:4,5: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
7:6: (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦 𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
8:7: (   𝐴𝐵   ▶   (∀𝑦[𝐴 / 𝑥](𝑦 𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷) )   )
9:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦 𝐶𝑦𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷))   )
10:8,9: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦(𝑦 𝐶𝑦𝐷) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷) )   )
11:: (𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦𝐷))
110:11: 𝑥(𝐶𝐷 ↔ ∀𝑦(𝑦𝐶𝑦 𝐷))
12:1,110: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 [𝐴 / 𝑥]𝑦(𝑦𝐶𝑦𝐷))   )
13:10,12: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
14:: (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷 ↔ ∀ 𝑦(𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))
15:13,14: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝐶𝐷 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
qed:15: (𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
 
TheoremcsbingVD 38142 Virtual deduction proof of csbingOLD 38076. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbingOLD 38076 is csbingVD 38142 without virtual deductions and was automatically derived from csbingVD 38142.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷) }
20:2: 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦 𝐷)}
30:1,20: (   𝐴𝐵   ▶   [𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}   )
3:1,30: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)}   )
4:1: (   𝐴𝐵   ▶   𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶 𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}   )
5:3,4: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}   )
6:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦 𝐴 / 𝑥𝐶)   )
7:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦 𝐴 / 𝑥𝐷)   )
8:6,7: (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶 [𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷) )   )
9:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
10:9,8: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
11:10: (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦 𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
12:11: (   𝐴𝐵   ▶   {𝑦[𝐴 / 𝑥](𝑦𝐶 𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}   )
13:5,12: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}   )
14:: (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) = { 𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}
15:13,14: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
qed:15: (𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = ( 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
 
TheoremonfrALTlem5VD 38143* Virtual deduction proof of onfrALTlem5 37778. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem5 37778 is onfrALTlem5VD 38143 without virtual deductions and was automatically derived from onfrALTlem5VD 38143.
1:: 𝑎 ∈ V
2:1: (𝑎𝑥) ∈ V
3:2: ([(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎 𝑥) = ∅)
4:3: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ ¬ (𝑎𝑥) = ∅)
5:: ((𝑎𝑥) ≠ ∅ ↔ ¬ (𝑎𝑥 ) = ∅)
6:4,5: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎𝑥) ≠ ∅)
7:2: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏]¬ 𝑏 = ∅)
8:: (𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
9:8: 𝑏(𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅)
10:2,9: ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ [(𝑎𝑥) / 𝑏]¬ 𝑏 = ∅)
11:7,10: [(𝑎𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅)
12:6,11: ([(𝑎𝑥) / 𝑏]𝑏 ≠ ∅ ↔ ( 𝑎𝑥) ≠ ∅)
13:2: ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥 ) ↔ (𝑎𝑥) ⊆ (𝑎𝑥))
14:12,13: (([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎 𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎 𝑥) ∧ (𝑎𝑥) ≠ ∅))
15:2: ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑏 ⊆ (𝑎𝑥) ∧ [(𝑎𝑥) / 𝑏]𝑏 ≠ ∅))
16:15,14: ([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) ↔ ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅))
17:2: (𝑎𝑥) / 𝑏(𝑏𝑦) = ( (𝑎𝑥) / 𝑏𝑏(𝑎𝑥) / 𝑏𝑦)
18:2: (𝑎𝑥) / 𝑏𝑏 = (𝑎𝑥)
19:2: (𝑎𝑥) / 𝑏𝑦 = 𝑦
20:18,19: ((𝑎𝑥) / 𝑏𝑏(𝑎 𝑥) / 𝑏𝑦) = ((𝑎𝑥) ∩ 𝑦)
21:17,20: (𝑎𝑥) / 𝑏(𝑏𝑦) = (( 𝑎𝑥) ∩ 𝑦)
22:2: ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ (𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏 ∅)
23:2: (𝑎𝑥) / 𝑏∅ = ∅
24:21,23: ((𝑎𝑥) / 𝑏(𝑏𝑦) = (𝑎𝑥) / 𝑏∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
25:22,24: ([(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅ ↔ ((𝑎𝑥) ∩ 𝑦) = ∅)
26:2: ([(𝑎𝑥) / 𝑏]𝑦𝑏𝑦 (𝑎𝑥))
27:25,26: (([(𝑎𝑥) / 𝑏]𝑦𝑏[ (𝑎𝑥) / 𝑏](𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ (( 𝑎𝑥) ∩ 𝑦) = ∅))
28:2: ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏 𝑦) = ∅) ↔ ([(𝑎𝑥) / 𝑏]𝑦𝑏[(𝑎𝑥) / 𝑏](𝑏𝑦) = ∅))
29:27,28: ([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
30:29: 𝑦([(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
31:30: (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) 𝑦) = ∅))
32:: (∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅ ))
33:31,32: (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
34:2: (∃𝑦[(𝑎𝑥) / 𝑏](𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ ( 𝑏𝑦) = ∅))
35:33,34: ([(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦 ) = ∅)
36:: (∃𝑦𝑏(𝑏𝑦) = ∅ ↔ ∃𝑦 (𝑦𝑏 ∧ (𝑏𝑦) = ∅))
37:36: 𝑏(∃𝑦𝑏(𝑏𝑦) = ∅ ↔ 𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
38:2,37: ([(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏 𝑦) = ∅ ↔ [(𝑎𝑥) / 𝑏]𝑦(𝑦𝑏 ∧ (𝑏𝑦) = ∅))
39:35,38: ([(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏 𝑦) = ∅ ↔ ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)
40:16,39: (([(𝑎𝑥) / 𝑏](𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏 𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
41:2: ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅) ↔ ([(𝑎 𝑥) / 𝑏](𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎𝑥) / 𝑏]𝑦𝑏(𝑏𝑦) = ∅))
qed:40,41: ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅) ↔ (((𝑎 𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥 )((𝑎𝑥) ∩ 𝑦) = ∅))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
 
TheoremonfrALTlem4VD 38144* Virtual deduction proof of onfrALTlem4 37779. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem4 37779 is onfrALTlem4VD 38144 without virtual deductions and was automatically derived from onfrALTlem4VD 38144.
1:: 𝑦 ∈ V
2:1: ([𝑦 / 𝑥](𝑎𝑥) = ∅ ↔ 𝑦 / 𝑥(𝑎𝑥) = 𝑦 / 𝑥∅)
3:1: 𝑦 / 𝑥(𝑎𝑥) = (𝑦 / 𝑥 𝑎𝑦 / 𝑥𝑥)
4:1: 𝑦 / 𝑥𝑎 = 𝑎
5:1: 𝑦 / 𝑥𝑥 = 𝑦
6:4,5: (𝑦 / 𝑥𝑎𝑦 / 𝑥𝑥) = ( 𝑎𝑦)
7:3,6: 𝑦 / 𝑥(𝑎𝑥) = (𝑎𝑦)
8:1: 𝑦 / 𝑥∅ = ∅
9:7,8: (𝑦 / 𝑥(𝑎𝑥) = 𝑦 / 𝑥 ∅ ↔ (𝑎𝑦) = ∅)
10:2,9: ([𝑦 / 𝑥](𝑎𝑥) = ∅ ↔ (𝑎 𝑦) = ∅)
11:1: ([𝑦 / 𝑥]𝑥𝑎𝑦𝑎)
12:11,10: (([𝑦 / 𝑥]𝑥𝑎[𝑦 / 𝑥]( 𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
13:1: ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ([𝑦 / 𝑥]𝑥𝑎[𝑦 / 𝑥](𝑎𝑥) = ∅))
qed:13,12: ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
 
TheoremonfrALTlem3VD 38145* Virtual deduction proof of onfrALTlem3 37780. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem3 37780 is onfrALTlem3VD 38145 without virtual deductions and was automatically derived from onfrALTlem3VD 38145.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   )
2:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   )
3:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥𝑎   )
4:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 On   )
5:3,4: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥 ∈ On   )
6:5: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Ord 𝑥   )
7:6: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶    E We 𝑥   )
8:: (𝑎𝑥) ⊆ 𝑥
9:7,8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶    E We (𝑎𝑥)   )
10:9: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶    E Fr (𝑎𝑥)   )
11:10: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑏((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅)   )
12:: 𝑥 ∈ V
13:12,8: (𝑎𝑥) ∈ V
14:13,11: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   [(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅)   )
15:: ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅) ↔ (((𝑎 𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)( (𝑎𝑥) ∩ 𝑦) = ∅))
16:14,15: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ ( 𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)   )
17:: (𝑎𝑥) ⊆ (𝑎𝑥)
18:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   ¬ (𝑎𝑥) = ∅   )
19:18: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (𝑎𝑥) ≠ ∅   )
20:17,19: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎 𝑥) ≠ ∅)   )
qed:16,20: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦 ) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅   )
 
Theoremsimplbi2comtVD 38146 Virtual deduction proof of simplbi2comt 654. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. simplbi2comt 654 is simplbi2comtVD 38146 without virtual deductions and was automatically derived from simplbi2comtVD 38146.
1:: (   (𝜑 ↔ (𝜓𝜒))   ▶   (𝜑 ↔ ( 𝜓𝜒))   )
2:1: (   (𝜑 ↔ (𝜓𝜒))   ▶   ((𝜓𝜒 ) → 𝜑)   )
3:2: (   (𝜑 ↔ (𝜓𝜒))   ▶   (𝜓 → (𝜒 𝜑))   )
4:3: (   (𝜑 ↔ (𝜓𝜒))   ▶   (𝜒 → (𝜓 𝜑))   )
qed:4: ((𝜑 ↔ (𝜓𝜒)) → (𝜒 → (𝜓 𝜑)))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ↔ (𝜓𝜒)) → (𝜒 → (𝜓𝜑)))
 
TheoremonfrALTlem2VD 38147* Virtual deduction proof of onfrALTlem2 37782. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem2 37782 is onfrALTlem2VD 38147 without virtual deductions and was automatically derived from onfrALTlem2VD 38147.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   )
2:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ (𝑎𝑦)   )
3:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑎   )
4:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   )
5:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   )
6:5: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥𝑎   )
7:4: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 On   )
8:6,7: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥 ∈ On   )
9:8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Ord 𝑥   )
10:9: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Tr 𝑥   )
11:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑦 ∈ (𝑎𝑥)   )
12:11: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑦𝑥   )
13:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑦   )
14:10,12,13: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑥   )
15:3,14: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ (𝑎𝑥)   )
16:13,15: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)   )
17:16: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦))   )
18:17: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑧(𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦))   )
19:18: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦)   )
20:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   )
21:20: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   ((𝑎𝑥) ∩ 𝑦) = ∅   )
22:19,21: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑎𝑦) = ∅   )
23:20: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)   )
24:23: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑦𝑎   )
25:22,24: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
26:25: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
27:26: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥 ) ∩ 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
28:27: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥 ) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
29:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦 ) = ∅   )
30:29: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) 𝑦) = ∅)   )
31:28,30: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
qed:31: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
 
TheoremonfrALTlem1VD 38148* Virtual deduction proof of onfrALTlem1 37784. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem1 37784 is onfrALTlem1VD 38148 without virtual deductions and was automatically derived from onfrALTlem1VD 38148.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   )
2:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   𝑥(𝑥𝑎 ∧ (𝑎𝑥) = ∅)   )
3:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅)    )
4:: ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅ ) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
5:4: 𝑦([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
6:5: (∃𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))
7:3,6: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
8:: (∃𝑦𝑎(𝑎𝑦) = ∅ ↔ ∃𝑦( 𝑦𝑎 ∧ (𝑎𝑦) = ∅))
qed:7,8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
 
TheoremonfrALTVD 38149 Virtual deduction proof of onfrALT 37785. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALT 37785 is onfrALTVD 38149 without virtual deductions and was automatically derived from onfrALTVD 38149.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
2:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
3:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    (¬ (𝑎𝑥) = ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
4:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    ((𝑎𝑥) = ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
5:: ((𝑎𝑥) = ∅ ∨ ¬ (𝑎𝑥) = ∅)
6:5,4,3: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥𝑎   ▶    𝑦𝑎(𝑎𝑦) = ∅   )
7:6: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑥𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
8:7: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑥(𝑥 𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
9:8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (∃𝑥𝑥 𝑎 → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
10:: (𝑎 ≠ ∅ ↔ ∃𝑥𝑥𝑎)
11:9,10: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ∅ → ∃𝑦𝑎(𝑎𝑦) = ∅)   )
12:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 On ∧ 𝑎 ≠ ∅)   )
13:12: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎    )
14:13,11: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑦 𝑎(𝑎𝑦) = ∅   )
15:14: ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
16:15: 𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 𝑎(𝑎𝑦) = ∅)
qed:16: E Fr On
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
E Fr On
 
Theoremcsbeq2gVD 38150 Virtual deduction proof of csbeq2gOLD 37786. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbeq2gOLD 37786 is csbeq2gVD 38150 without virtual deductions and was automatically derived from csbeq2gVD 38150.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   (∀𝑥𝐵 = 𝐶[𝐴 / 𝑥] 𝐵 = 𝐶)   )
3:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)   )
4:2,3: (   𝐴𝑉   ▶   (∀𝑥𝐵 = 𝐶𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐶)   )
qed:4: (𝐴𝑉 → (∀𝑥𝐵 = 𝐶𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → (∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
 
TheoremcsbsngVD 38151 Virtual deduction proof of csbsng 4190. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbsng 4190 is csbsngVD 38151 without virtual deductions and was automatically derived from csbsngVD 38151.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑦 = 𝑦   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑦 = 𝐴 / 𝑥𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 𝑦 = 𝐴 / 𝑥𝐵)   )
6:5: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵)   )
7:6: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
8:1: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
9:7,8: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
10:: {𝐵} = {𝑦𝑦 = 𝐵}
11:10: 𝑥{𝐵} = {𝑦𝑦 = 𝐵}
12:1,11: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}   )
13:9,12: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = { 𝑦𝑦 = 𝐴 / 𝑥𝐵}   )
14:: {𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}
15:13,14: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵}   )
qed:15: (𝐴𝑉𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵})
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})
 
TheoremcsbxpgVD 38152 Virtual deduction proof of csbxpgOLD 38075. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbxpgOLD 38075 is csbxpgVD 38152 without virtual deductions and was automatically derived from csbxpgVD 38152.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝐵 𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑤 = 𝑤   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑤𝐴 / 𝑥𝐵𝑤𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝐵𝑤 𝐴 / 𝑥𝐵)   )
6:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐶 𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶)   )
7:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑦 = 𝑦   )
8:7: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐶)   )
9:6,8: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦 𝐴 / 𝑥𝐶)   )
10:5,9: (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑤𝐵 [𝐴 / 𝑥]𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵 𝑦𝐴 / 𝑥𝐶))   )
11:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑤𝐵 𝑦𝐶) ↔ ([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶))   )
12:10,11: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑤𝐵 𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))   )
13:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑧 = ⟨𝑤   ,    𝑦⟩ ↔ 𝑧 = ⟨𝑤, 𝑦⟩)   )
14:12,13: (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦 ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
15:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦 [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)))   )
16:14,15: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
17:16: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥](𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
18:17: (   𝐴𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
19:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)))   )
20:18,19: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
21:20: (   𝐴𝑉   ▶   𝑤([𝐴 / 𝑥]𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
22:21: (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
23:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]𝑦 (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)))   )
24:22,23: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
25:24: (   𝐴𝑉   ▶   𝑧([𝐴 / 𝑥]𝑤 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))   )
26:25: (   𝐴𝑉   ▶   {𝑧[𝐴 / 𝑥]𝑤 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}    )
27:1: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑤 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧[𝐴 / 𝑥] 𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}   )
28:26,27: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑤 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}    )
29:: {⟨𝑤   ,   𝑦⟩ ∣ (𝑤𝐵𝑦𝐶)} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
30:: (𝐵 × 𝐶) = {⟨𝑤   ,   𝑦⟩ ∣ (𝑤𝐵 𝑦𝐶)}
31:29,30: (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤 , 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
32:31: 𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = 𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
33:1,32: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 × 𝐶) = 𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵 𝑦𝐶))}   )
34:28,33: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵 𝑦𝐴 / 𝑥𝐶))}   )
35:: {⟨𝑤   ,   𝑦⟩ ∣ (𝑤𝐴 / 𝑥𝐵 𝑦𝐴 / 𝑥𝐶)} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}
36:: (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) = { 𝑤, 𝑦⟩ ∣ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)}
37:35,36: (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵 𝑦𝐴 / 𝑥𝐶))}
38:34,37: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶)   )
qed:38: (𝐴𝑉𝐴 / 𝑥(𝐵 × 𝐶) = ( 𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶))
 
TheoremcsbresgVD 38153 Virtual deduction proof of csbresgOLD 38077. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbresgOLD 38077 is csbresgVD 38153 without virtual deductions and was automatically derived from csbresgVD 38153.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   𝐴 / 𝑥V = V   )
3:2: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) = (𝐴 / 𝑥𝐶 × V)   )
4:1: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V)   )
5:3,4: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V)   )
6:5: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))   )
7:1: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V))   )
8:6,7: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))   )
9:: (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
10:9: 𝑥(𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
11:1,10: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V))   )
12:8,11: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵𝐶) = ( 𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))   )
13:: (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = ( 𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
14:12,13: (   𝐴𝑉   ▶   𝐴 / 𝑥(𝐵𝐶) = ( 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)   )
qed:14: (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = ( 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
 
TheoremcsbrngVD 38154 Virtual deduction proof of csbrngOLD 38078. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbrngOLD 38078 is csbrngVD 38154 without virtual deductions and was automatically derived from csbrngVD 38154.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤   ,   𝑦 𝐵𝐴 / 𝑥𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
3:1: (   𝐴𝑉   ▶   𝐴 / 𝑥𝑤   ,   𝑦⟩ = 𝑤, 𝑦   )
4:3: (   𝐴𝑉   ▶   (𝐴 / 𝑥𝑤   ,   𝑦 𝐴 / 𝑥𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
5:2,4: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤   ,   𝑦 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
6:5: (   𝐴𝑉   ▶   𝑤([𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
7:6: (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
8:1: (   𝐴𝑉   ▶   (∃𝑤[𝐴 / 𝑥]𝑤   ,    𝑦⟩ ∈ 𝐵[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵)   )
9:7,8: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑤𝑤    ,   𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
10:9: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥]𝑤 𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵)   )
11:10: (   𝐴𝑉   ▶   {𝑦[𝐴 / 𝑥]𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
12:1: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦[𝐴 / 𝑥]𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
13:11,12: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑦 ∣ ∃𝑤 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
14:: ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤   ,   𝑦⟩ ∈ 𝐵}
15:14: 𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤𝑤   ,   𝑦 𝐵}
16:1,15: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = 𝐴 / 𝑥{𝑦 ∣ ∃𝑤𝑤, 𝑦⟩ ∈ 𝐵}   )
17:13,16: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = {𝑦 𝑤𝑤, 𝑦⟩ ∈ 𝐴 / 𝑥𝐵}   )
18:: ran 𝐴 / 𝑥𝐵 = {𝑦 ∣ ∃𝑤𝑤    ,   𝑦⟩ ∈ 𝐴 / 𝑥𝐵}
19:17,18: (   𝐴𝑉   ▶   𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵   )
qed:19: (𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)
 
Theoremcsbima12gALTVD 38155 Virtual deduction proof of csbima12gALTOLD 38079. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbima12gALTOLD 38079 is csbima12gALTVD 38155 without virtual deductions and was automatically derived from csbima12gALTVD 38155.
1:: (   𝐴𝐶   ▶   𝐴𝐶   )
2:1: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ( 𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
3:2: (   𝐴𝐶   ▶    ran 𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
4:1: (   𝐴𝐶   ▶    𝐴 / 𝑥ran (𝐹𝐵) = ran 𝐴 / 𝑥(𝐹𝐵)   )
5:3,4: (   𝐴𝐶   ▶    𝐴 / 𝑥ran (𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
6:: (𝐹𝐵) = ran (𝐹𝐵)
7:6: 𝑥(𝐹𝐵) = ran (𝐹𝐵)
8:1,7: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥ran (𝐹𝐵)   )
9:5,8: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
10:: (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = ran (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
11:9,10: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = ( 𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
qed:11: (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = ( 𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
 
TheoremcsbunigVD 38156 Virtual deduction proof of csbunigOLD 38073. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbunigOLD 38073 is csbunigVD 38156 without virtual deductions and was automatically derived from csbunigVD 38156.
1:: (   𝐴𝑉   ▶   𝐴𝑉   )
2:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑧𝑦𝑧 𝑦)   )
3:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦𝐵𝑦 𝐴 / 𝑥𝐵)   )
4:2,3: (   𝐴𝑉   ▶   (([𝐴 / 𝑥]𝑧𝑦 [𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
5:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧𝑦 𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵))   )
6:4,5: (   𝐴𝑉   ▶   ([𝐴 / 𝑥](𝑧𝑦 𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
7:6: (   𝐴𝑉   ▶   𝑦([𝐴 / 𝑥](𝑧 𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
8:7: (   𝐴𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧 𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
9:1: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵))   )
10:8,9: (   𝐴𝑉   ▶   ([𝐴 / 𝑥]𝑦(𝑧 𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
11:10: (   𝐴𝑉   ▶   𝑧([𝐴 / 𝑥]𝑦( 𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵))   )
12:11: (   𝐴𝑉   ▶   {𝑧[𝐴 / 𝑥]𝑦( 𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦 𝑦𝐴 / 𝑥𝐵)}   )
13:1: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧 𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)}    )
14:12,13: (   𝐴𝑉   ▶   𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧 𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦 𝑦𝐴 / 𝑥𝐵)}   )
15:: 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
16:15: 𝑥 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦 𝐵)}
17:1,16: (   𝐴𝑉   ▶   [𝐴 / 𝑥] 𝐵 = {𝑧 𝑦(𝑧𝑦𝑦𝐵)}   )
18:1,17: (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}   )
19:14,18: (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = {𝑧 𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}   )
20:: 𝐴 / 𝑥𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦 𝑦𝐴 / 𝑥𝐵)}
21:19,20: (   𝐴𝑉   ▶   𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵   )
qed:21: (𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
 
Theoremcsbfv12gALTVD 38157 Virtual deduction proof of csbfv12gALTOLD 38074. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbfv12gALTOLD 38074 is csbfv12gALTVD 38157 without virtual deductions and was automatically derived from csbfv12gALTVD 38157.
1:: (   𝐴𝐶   ▶   𝐴𝐶   )
2:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦} = { 𝑦}   )
3:1: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵 }) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵})   )
4:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵}   )
5:4: (   𝐴𝐶   ▶   (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
6:3,5: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵 }) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
7:1: (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ { 𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦})   )
8:6,2: (   𝐴𝐶   ▶   (𝐴 / 𝑥(𝐹 “ { 𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
9:7,8: (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ { 𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})    )
10:9: (   𝐴𝐶   ▶   𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
11:10: (   𝐴𝐶   ▶   {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
12:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}}   )
13:11,12: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦 }}   )
14:13: (   𝐴𝐶   ▶    𝐴 / 𝑥{𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 {𝐴 / 𝑥𝐵}) = {𝑦}}   )
15:1: (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
16:14,15: (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
17:: (𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}
18:17: 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵 }) = {𝑦}}
19:1,18: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
20:16,19: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
21:: (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}
22:20,21: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
qed:22: (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
 
Theoremcon5VD 38158 Virtual deduction proof of con5 37749. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. con5 37749 is con5VD 38158 without virtual deductions and was automatically derived from con5VD 38158.
1:: (   (𝜑 ↔ ¬ 𝜓)   ▶   (𝜑 ↔ ¬ 𝜓)   )
2:1: (   (𝜑 ↔ ¬ 𝜓)   ▶   𝜓𝜑)   )
3:2: (   (𝜑 ↔ ¬ 𝜓)   ▶   𝜑 → ¬ ¬ 𝜓 )   )
4:: (𝜓 ↔ ¬ ¬ 𝜓)
5:3,4: (   (𝜑 ↔ ¬ 𝜓)   ▶   𝜑𝜓)   )
qed:5: ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑𝜓))
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑𝜓))
 
TheoremrelopabVD 38159 Virtual deduction proof of relopab 5169. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. relopab 5169 is relopabVD 38159 without virtual deductions and was automatically derived from relopabVD 38159.
1:: (   𝑦 = 𝑣   ▶   𝑦 = 𝑣   )
2:1: (   𝑦 = 𝑣   ▶   𝑥   ,   𝑦⟩ = ⟨𝑥   ,   𝑣    )
3:: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
4:3: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥   ,   𝑣⟩ = ⟨ 𝑢, 𝑣   )
5:2,4: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥   ,   𝑦⟩ = ⟨ 𝑢, 𝑣   )
6:5: (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)   )
7:6: (   𝑦 = 𝑣   ▶   (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,    𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))   )
8:7: (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
9:8: (∃𝑣𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)))
90:: (𝑣 = 𝑦𝑦 = 𝑣)
91:90: (∃𝑣𝑣 = 𝑦 ↔ ∃𝑣𝑦 = 𝑣)
92:: 𝑣𝑣 = 𝑦
10:91,92: 𝑣𝑦 = 𝑣
11:9,10: 𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
12:11: (𝑥 = 𝑢 → ∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))
13:: (∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢 , 𝑣⟩) → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩))
14:12,13: (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩))
15:14: (∃𝑢𝑥 = 𝑢 → ∃𝑢(𝑧 = ⟨𝑥   ,   𝑦 ⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩))
150:: (𝑢 = 𝑥𝑥 = 𝑢)
151:150: (∃𝑢𝑢 = 𝑥 ↔ ∃𝑢𝑥 = 𝑢)
152:: 𝑢𝑢 = 𝑥
16:151,152: 𝑢𝑥 = 𝑢
17:15,16: 𝑢(𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣𝑧 = ⟨ 𝑢, 𝑣⟩)
18:17: (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢𝑣𝑧 = ⟨ 𝑢, 𝑣⟩)
19:18: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑦𝑢 𝑣𝑧 = ⟨𝑢, 𝑣⟩)
20:: (∃𝑦𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
21:19,20: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
22:21: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑥 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
23:: (∃𝑥𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → 𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩)
24:22,23: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢 𝑣𝑧 = ⟨𝑢, 𝑣⟩)
25:24: {𝑧 ∣ ∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} ⊆ {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩}
26:: 𝑥 ∈ V
27:: 𝑦 ∈ V
28:26,27: (𝑥 ∈ V ∧ 𝑦 ∈ V)
29:28: (𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ (𝑧 = ⟨𝑥   ,   𝑦 ⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
30:29: (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑦(𝑧 = 𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
31:30: (∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑥 𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)))
32:31: {𝑧 ∣ ∃𝑥𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} = { 𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))}
320:25,32: {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢, 𝑣⟩}
33:: 𝑢 ∈ V
34:: 𝑣 ∈ V
35:33,34: (𝑢 ∈ V ∧ 𝑣 ∈ V)
36:35: (𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ (𝑧 = ⟨𝑢   ,   𝑣 ⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
37:36: (∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑣(𝑧 = 𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
38:37: (∃𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑢 𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)))
39:38: {𝑧 ∣ ∃𝑢𝑣𝑧 = ⟨𝑢   ,   𝑣⟩} = { 𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
40:320,39: {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))}
41:: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) }
42:: {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = {𝑧 ∣ ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) }
43:40,41,42: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)}
44:: {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = (V × V)
45:43,44: {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ (V × V)
46:28: (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V))
47:46: {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥   ,   𝑦 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
48:45,47: {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ (V × V)
qed:48: Rel {⟨𝑥   ,   𝑦⟩ ∣ 𝜑}
(Contributed by Alan Sare, 9-Jul-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theorem19.41rgVD 38160 Virtual deduction proof of 19.41rg 37787. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 19.41rg 37787 is 19.41rgVD 38160 without virtual deductions and was automatically derived from 19.41rgVD 38160. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (𝜓 → (𝜑 → (𝜑𝜓)))
2:1: ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → ( 𝜑𝜓))))
3:2: 𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑𝜓))))
4:3: (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 𝑥(𝜑 → (𝜑𝜓))))
5:: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   𝑥(𝜓 → ∀𝑥𝜓)   )
6:4,5: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑𝜓)))   )
7:: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    𝑥𝜓   )
8:6,7: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    𝑥(𝜑 → (𝜑𝜓))   )
9:8: (   𝑥(𝜓 → ∀𝑥𝜓)   ,   𝑥𝜓   ▶    (∃𝑥𝜑 → ∃𝑥(𝜑𝜓))   )
10:9: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
11:5: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ∀ 𝑥𝜓)   )
12:10,11: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ( 𝑥𝜑 → ∃𝑥(𝜑𝜓)))   )
13:12: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑𝜓)))   )
14:13: (   𝑥(𝜓 → ∀𝑥𝜓)   ▶   ((∃𝑥 𝜑𝜓) → ∃𝑥(𝜑𝜓))   )
qed:14: (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 𝜓) → ∃𝑥(𝜑𝜓)))
(∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))
 
Theorem2pm13.193VD 38161 Virtual deduction proof of 2pm13.193 37789. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 2pm13.193 37789 is 2pm13.193VD 38161 without virtual deductions and was automatically derived from 2pm13.193VD 38161. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
2:1: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
3:2: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝑥 = 𝑢   )
4:1: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
5:3,4: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
6:5: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
7:6: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
8:2: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝑦 = 𝑣   )
9:7,8: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
10:9: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   (𝜑𝑦 = 𝑣)   )
11:10: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝜑   )
12:2,11: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
13:12: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
14:: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (( 𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
15:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
16:15: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑦 = 𝑣   )
17:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝜑    )
18:16,17: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ( 𝜑𝑦 = 𝑣)   )
19:18: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑣 / 𝑦]𝜑𝑦 = 𝑣)   )
20:15: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑥 = 𝑢   )
21:19: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑣 / 𝑦]𝜑   )
22:20,21: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
23:22: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑𝑥 = 𝑢)   )
24:23: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
25:15,24: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   ▶   (( 𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
26:25: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
qed:13,26: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
(((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
 
TheoremhbimpgVD 38162 Virtual deduction proof of hbimpg 37791. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbimpg 37791 is hbimpgVD 38162 without virtual deductions and was automatically derived from hbimpgVD 38162. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 𝑥𝜓))   )
2:1: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥(𝜑 → ∀𝑥𝜑)   )
3:: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   ¬ 𝜑   )
4:2: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥𝜑 → ∀𝑥¬ 𝜑)   )
5:4: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝜑 → ∀𝑥¬ 𝜑)   )
6:3,5: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   𝑥¬ 𝜑   )
7:: 𝜑 → (𝜑𝜓))
8:7: (∀𝑥¬ 𝜑 → ∀𝑥(𝜑𝜓))
9:6,8: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   𝑥(𝜑𝜓)   )
10:9: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝜑 → ∀𝑥(𝜑𝜓))   )
11:: (𝜓 → (𝜑𝜓))
12:11: (∀𝑥𝜓 → ∀𝑥(𝜑𝜓))
13:1: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥(𝜓 → ∀𝑥𝜓)   )
14:13: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (𝜓 → ∀𝑥𝜓)   )
15:14,12: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (𝜓 → ∀𝑥(𝜑𝜓))   )
16:10,15: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ((¬ 𝜑𝜓) → ∀𝑥(𝜑𝜓))   )
17:: ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
18:16,17: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ((𝜑𝜓) → ∀𝑥(𝜑𝜓))   )
19:: (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑥( 𝜑 → ∀𝑥𝜑))
20:: (∀𝑥(𝜓 → ∀𝑥𝜓) → ∀𝑥𝑥( 𝜓 → ∀𝑥𝜓))
21:19,20: ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥(∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 𝑥𝜓)))
22:21,18: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓))   )
qed:22: ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓)))
((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓)))
 
TheoremhbalgVD 38163 Virtual deduction proof of hbalg 37792. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 37792 is hbalgVD 38163 without virtual deductions and was automatically derived from hbalgVD 38163. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(𝜑 → ∀𝑥𝜑)   )
2:1: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑦𝑥𝜑)   )
3:: (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
4:2,3: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑥𝑦𝜑)   )
5:: (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦𝑦( 𝜑 → ∀𝑥𝜑))
6:5,4: (   𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦(∀ 𝑦𝜑 → ∀𝑥𝑦𝜑)   )
qed:6: (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦 𝜑 → ∀𝑥𝑦𝜑))
(∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
 
TheoremhbexgVD 38164 Virtual deduction proof of hbexg 37793. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbexg 37793 is hbexgVD 38164 without virtual deductions and was automatically derived from hbexgVD 38164. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(𝜑 → ∀𝑥𝜑)   )
2:1: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝑥(𝜑 → ∀𝑥𝜑)   )
3:2: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (𝜑 → ∀𝑥𝜑)   )
4:3: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝜑 → ∀𝑥¬ 𝜑)   )
5:: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦 𝑥(𝜑 → ∀𝑥𝜑))
6:: (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦 𝑦𝑥(𝜑 → ∀𝑥𝜑))
7:5: (∀𝑦𝑥𝑦(𝜑 → ∀𝑥𝜑) ↔ 𝑦𝑦𝑥(𝜑 → ∀𝑥𝜑))
8:5,6,7: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦 𝑥𝑦(𝜑 → ∀𝑥𝜑))
9:8,4: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝑥𝜑 → ∀𝑥¬ 𝜑)   )
10:9: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦𝜑 → ∀𝑥¬ 𝜑)   )
11:10: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 𝜑 → ∀𝑥¬ 𝜑)   )
12:11: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 (∀𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
13:12: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀ 𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
14:: (∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥 𝑥𝑦(𝜑 → ∀𝑥𝜑))
15:13,14: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (∀𝑦¬ 𝜑 → ∀𝑥𝑦¬ 𝜑)   )
16:15: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 (¬ ∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
17:16: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶    𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
18:: (∃𝑦𝜑 ↔ ¬ ∀𝑦¬ 𝜑)
19:17,18: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   )
20:18: (∀𝑥𝑦𝜑 ↔ ∀𝑥¬ ∀𝑦¬ 𝜑)
21:19,20: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥𝑦𝜑)   )
22:8,21: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑦 (∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
23:14,22: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
qed:23: (   𝑥𝑦(𝜑 → ∀𝑥𝜑)   ▶   𝑥 𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑)   )
(∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑))
 
Theoremax6e2eqVD 38165* The following User's Proof is a Virtual Deduction proof (see wvd1 37806) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2eq 37794 is ax6e2eqVD 38165 without virtual deductions and was automatically derived from ax6e2eqVD 38165. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑥𝑥 = 𝑦   ▶   𝑥𝑥 = 𝑦   )
2:: (   𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   )
3:1: (   𝑥𝑥 = 𝑦   ▶   𝑥 = 𝑦   )
4:2,3: (   𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   𝑦 = 𝑢   )
5:2,4: (   𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   (𝑥 = 𝑢𝑦 = 𝑢)   )
6:5: (   𝑥𝑥 = 𝑦   ▶   (𝑥 = 𝑢 → (𝑥 = 𝑢 𝑦 = 𝑢))   )
7:6: (∀𝑥𝑥 = 𝑦 → (𝑥 = 𝑢 → (𝑥 = 𝑢𝑦 = 𝑢)))
8:7: (∀𝑥𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → ( 𝑥 = 𝑢𝑦 = 𝑢)))
9:: (∀𝑥𝑥 = 𝑦 ↔ ∀𝑥𝑥𝑥 = 𝑦)
10:8,9: (∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢 𝑦 = 𝑢)))
11:1,10: (   𝑥𝑥 = 𝑦   ▶   𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢𝑦 = 𝑢))   )
12:11: (   𝑥𝑥 = 𝑦   ▶   (∃𝑥𝑥 = 𝑢 → ∃𝑥 (𝑥 = 𝑢𝑦 = 𝑢))   )
13:: 𝑥𝑥 = 𝑢
14:13,12: (   𝑥𝑥 = 𝑦   ▶   𝑥(𝑥 = 𝑢𝑦 = 𝑢 )   )
140:14: (∀𝑥𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑢) )
141:140: (∀𝑥𝑥 = 𝑦 → ∀𝑥𝑥(𝑥 = 𝑢𝑦 = 𝑢))
15:1,141: (   𝑥𝑥 = 𝑦   ▶   𝑥𝑥(𝑥 = 𝑢 𝑦 = 𝑢)   )
16:1,15: (   𝑥𝑥 = 𝑦   ▶   𝑦𝑥(𝑥 = 𝑢 𝑦 = 𝑢)   )
17:16: (   𝑥𝑥 = 𝑦   ▶   𝑦𝑥(𝑥 = 𝑢 𝑦 = 𝑢)   )
18:17: (   𝑥𝑥 = 𝑦   ▶   𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑢)   )
19:: (   𝑢 = 𝑣   ▶   𝑢 = 𝑣   )
20:: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   (𝑥 = 𝑢𝑦 = 𝑢)   )
21:20: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   𝑦 = 𝑢    )
22:19,21: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   𝑦 = 𝑣    )
23:20: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   𝑥 = 𝑢    )
24:22,23: (   𝑢 = 𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑢)   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
25:24: (   𝑢 = 𝑣   ▶   ((𝑥 = 𝑢𝑦 = 𝑢) → ( 𝑥 = 𝑢𝑦 = 𝑣))   )
26:25: (   𝑢 = 𝑣   ▶   𝑦((𝑥 = 𝑢𝑦 = 𝑢) → (𝑥 = 𝑢𝑦 = 𝑣))   )
27:26: (   𝑢 = 𝑣   ▶   (∃𝑦(𝑥 = 𝑢𝑦 = 𝑢) → ∃𝑦(𝑥 = 𝑢𝑦 = 𝑣))   )
28:27: (   𝑢 = 𝑣   ▶   𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑢) → ∃𝑦(𝑥 = 𝑢𝑦 = 𝑣))   )
29:28: (   𝑢 = 𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑢) → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))   )
30:29: (𝑢 = 𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑢 ) → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
31:18,30: (   𝑥𝑥 = 𝑦   ▶   (𝑢 = 𝑣 → ∃𝑥𝑦 (𝑥 = 𝑢𝑦 = 𝑣))   )
qed:31: (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦( 𝑥 = 𝑢𝑦 = 𝑣)))
(∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
 
Theoremax6e2ndVD 38166* The following User's Proof is a Virtual Deduction proof (see wvd1 37806) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2nd 37795 is ax6e2ndVD 38166 without virtual deductions and was automatically derived from ax6e2ndVD 38166. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: 𝑦𝑦 = 𝑣
2:: 𝑢 ∈ V
3:1,2: (𝑢 ∈ V ∧ ∃𝑦𝑦 = 𝑣)
4:3: 𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣)
5:: (𝑢 ∈ V ↔ ∃𝑥𝑥 = 𝑢)
6:5: ((𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ (∃𝑥𝑥 = 𝑢𝑦 = 𝑣))
7:6: (∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ ∃𝑦 (∃𝑥𝑥 = 𝑢𝑦 = 𝑣))
8:4,7: 𝑦(∃𝑥𝑥 = 𝑢𝑦 = 𝑣)
9:: (𝑧 = 𝑣 → ∀𝑥𝑧 = 𝑣)
10:: (𝑦 = 𝑣 → ∀𝑧𝑦 = 𝑣)
11:: (   𝑧 = 𝑦   ▶   𝑧 = 𝑦   )
12:11: (   𝑧 = 𝑦   ▶   (𝑧 = 𝑣𝑦 = 𝑣)   )
120:11: (𝑧 = 𝑦 → (𝑧 = 𝑣𝑦 = 𝑣))
13:9,10,120: (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣))
14:: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑥𝑥 = 𝑦   )
15:14,13: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   (𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣)   )
16:15: (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣))
17:16: (∀𝑥¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣))
18:: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦 )
19:17,18: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀ 𝑥𝑦 = 𝑣))
20:14,19: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   𝑥(𝑦 = 𝑣 𝑥𝑦 = 𝑣)   )
21:20: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ((∃𝑥𝑥 = 𝑢 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣))   )
22:21: (¬ ∀𝑥𝑥 = 𝑦 → ((∃𝑥𝑥 = 𝑢 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
23:22: (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥 𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
24:: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦 )
25:23,24: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣)))
26:14,25: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   𝑦((∃𝑥𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢𝑦 = 𝑣))   )
27:26: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   (∃𝑦(∃𝑥𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣))   )
28:8,27: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣)   )
29:28: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)   )
qed:29: (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣))
(¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theoremax6e2ndeqVD 38167* The following User's Proof is a Virtual Deduction proof (see wvd1 37806) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2eq 37794 is ax6e2ndeqVD 38167 without virtual deductions and was automatically derived from ax6e2ndeqVD 38167. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝑢𝑣   ▶   𝑢𝑣   )
2:: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   ( 𝑥 = 𝑢𝑦 = 𝑣)   )
3:2: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   𝑥 = 𝑢   )
4:1,3: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   𝑥 𝑣   )
5:2: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   𝑦 = 𝑣   )
6:4,5: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶   𝑥 𝑦   )
7:: (∀𝑥𝑥 = 𝑦𝑥 = 𝑦)
8:7: 𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
9:: 𝑥 = 𝑦𝑥𝑦)
10:8,9: (𝑥𝑦 → ¬ ∀𝑥𝑥 = 𝑦)
11:6,10: (   𝑢𝑣   ,   (𝑥 = 𝑢𝑦 = 𝑣)   ▶    ¬ ∀𝑥𝑥 = 𝑦   )
12:11: (   𝑢𝑣   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
13:12: (   𝑢𝑣   ▶   𝑥((𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
14:13: (   𝑢𝑣   ▶   (∃𝑥(𝑥 = 𝑢𝑦 = 𝑣) → ∃𝑥¬ ∀𝑥𝑥 = 𝑦)   )
15:: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦 )
19:15: (∃𝑥¬ ∀𝑥𝑥 = 𝑦 ↔ ¬ ∀𝑥𝑥 = 𝑦)
20:14,19: (   𝑢𝑣   ▶   (∃𝑥(𝑥 = 𝑢𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
21:20: (   𝑢𝑣   ▶   𝑦(∃𝑥(𝑥 = 𝑢 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
22:21: (   𝑢𝑣   ▶   (∃𝑦𝑥(𝑥 = 𝑢 𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦)   )
23:: (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ↔ ∃ 𝑦𝑥(𝑥 = 𝑢𝑦 = 𝑣))
24:22,23: (   𝑢𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦)   )
25:: (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦 )
26:25: (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∃𝑦𝑦¬ 𝑥𝑥 = 𝑦)
260:: (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦𝑦¬ 𝑥𝑥 = 𝑦)
27:260: (∃𝑦𝑦¬ ∀𝑥𝑥 = 𝑦 ↔ ∀𝑦¬ 𝑥𝑥 = 𝑦)
270:26,27: (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥 𝑥 = 𝑦)
28:: (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦 )
29:270,28: (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦 )
30:24,29: (   𝑢𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   )
31:30: (   𝑢𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣))   )
32:31: (𝑢𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣)))
33:: (   𝑢 = 𝑣   ▶   𝑢 = 𝑣   )
34:33: (   𝑢 = 𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → 𝑢 = 𝑣)   )
35:34: (   𝑢 = 𝑣   ▶   (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣))   )
36:35: (𝑢 = 𝑣 → (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣)))
37:: (𝑢 = 𝑣𝑢𝑣)
38:32,36,37: (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ( ¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣))
39:: (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦 (𝑥 = 𝑢𝑦 = 𝑣)))
40:: (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢 𝑦 = 𝑣))
41:40: (¬ ∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥 𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
42:: (∀𝑥𝑥 = 𝑦 ∨ ¬ ∀𝑥𝑥 = 𝑦)
43:39,41,42: (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣 ))
44:40,43: ((¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣) → ∃𝑥 𝑦(𝑥 = 𝑢𝑦 = 𝑣))
qed:38,44: ((¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥 𝑦(𝑥 = 𝑢𝑦 = 𝑣))
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theorem2sb5ndVD 38168* The following User's Proof is a Virtual Deduction proof (see wvd1 37806) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. 2sb5nd 37797 is 2sb5ndVD 38168 without virtual deductions and was automatically derived from 2sb5ndVD 38168. (Contributed by Alan Sare, 30-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
2:1: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
3:: ([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
4:3: [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
5:4: ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥] 𝑦[𝑣 / 𝑦]𝜑)
6:: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑥𝑥 = 𝑦   )
7:: (∀𝑦𝑦 = 𝑥 → ∀𝑥𝑥 = 𝑦)
8:7: (¬ ∀𝑥𝑥 = 𝑦 → ¬ ∀𝑦𝑦 = 𝑥)
9:6,8: (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑦𝑦 = 𝑥   )
10:9: ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀ 𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
11:5,10: ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
12:11: (¬ ∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
13:: ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
14:: (   𝑥𝑥 = 𝑦   ▶   𝑥𝑥 = 𝑦   )
15:14: (   𝑥𝑥 = 𝑦   ▶   (∀𝑥[𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
16:13,15: (   𝑥𝑥 = 𝑦   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦 ]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   )
17:16: (∀𝑥𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦] 𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
19:12,17: ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
20:19: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
21:2,20: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ (∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
22:21: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ ∃𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
23:13: (∃𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
24:22,23: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
240:24: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
241:: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
242:241,240: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
243:: ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ( [𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))) ↔ ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))))
25:242,243: (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ([ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
26:: ((¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥 𝑦(𝑥 = 𝑢𝑦 = 𝑣))
qed:25,26: ((¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
 
Theorem2uasbanhVD 38169* The following User's Proof is a Virtual Deduction proof (see wvd1 37806) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. 2uasbanh 37798 is 2uasbanhVD 38169 without virtual deductions and was automatically derived from 2uasbanhVD 38169. (Contributed by Alan Sare, 31-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
h1:: (𝜒 ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
100:1: (𝜒 → (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
2:100: (   𝜒   ▶   (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))   )
3:2: (   𝜒   ▶   𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
4:3: (   𝜒   ▶   𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣 )   )
5:4: (   𝜒   ▶   (¬ ∀𝑥𝑥 = 𝑦𝑢 = 𝑣)    )
6:5: (   𝜒   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))   )
7:3,6: (   𝜒   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   )
8:2: (   𝜒   ▶   𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)   )
9:5: (   𝜒   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))   )
10:8,9: (   𝜒   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜓   )
101:: ([𝑣 / 𝑦](𝜑𝜓) ↔ ([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
102:101: ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑𝜓) ↔ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦]𝜓))
103:: ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 ∧ [𝑣 / 𝑦 ]𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
104:102,103: ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑𝜓) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓))
11:7,10,104: (   𝜒   ▶   [𝑢 / 𝑥][𝑣 / 𝑦](𝜑 𝜓)   )
110:5: (   𝜒   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦](𝜑 𝜓) ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)))   )
12:11,110: (   𝜒   ▶   𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓))   )
120:12: (𝜒 → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣 ) ∧ (𝜑𝜓)))
13:1,120: ((∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)) → 𝑥𝑦((𝑥 = 𝑢 𝑦 = 𝑣) ∧ (𝜑𝜓)))
14:: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓))   )
15:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   (𝑥 = 𝑢𝑦 = 𝑣)   )
16:14: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   (𝜑𝜓)   )
17:16: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   𝜑   )
18:15,17: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)   )
19:18: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 )) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
20:19: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑 𝜓)) → ∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
21:20: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝜑𝜓)) → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
22:16: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   𝜓   )
23:15,22: (   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 ))   ▶   ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)   )
24:23: (((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓 )) → ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))
25:24: (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑 𝜓)) → ∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))
26:25: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝜑𝜓)) → ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓))
27:21,26: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝜑𝜓)) → (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ 𝑥𝑦( (𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
qed:13,27: (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ ( 𝜑𝜓)) ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ 𝑥𝑦( (𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
(𝜒 ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))       (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)) ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
 
Theoreme2ebindVD 38170 The following User's Proof is a Virtual Deduction proof (see wvd1 37806) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. e2ebind 37800 is e2ebindVD 38170 without virtual deductions and was automatically derived from e2ebindVD 38170.
1:: (𝜑𝜑)
2:1: (∀𝑦𝑦 = 𝑥 → (𝜑𝜑))
3:2: (∀𝑦𝑦 = 𝑥 → (∃𝑦𝜑 ↔ ∃𝑥𝜑 ))
4:: (   𝑦𝑦 = 𝑥   ▶   𝑦𝑦 = 𝑥   )
5:3,4: (   𝑦𝑦 = 𝑥   ▶   (∃𝑦𝜑 ↔ ∃𝑥 𝜑)   )
6:: (∀𝑦𝑦 = 𝑥 → ∀𝑦𝑦𝑦 = 𝑥)
7:5,6: (   𝑦𝑦 = 𝑥   ▶   𝑦(∃𝑦𝜑 𝑥𝜑)   )
8:7: (   𝑦𝑦 = 𝑥   ▶   (∃𝑦𝑦𝜑 𝑦𝑥𝜑)   )
9:: (∃𝑦𝑥𝜑 ↔ ∃𝑥𝑦𝜑)
10:8,9: (   𝑦𝑦 = 𝑥   ▶   (∃𝑦𝑦𝜑 𝑥𝑦𝜑)   )
11:: (∃𝑦𝜑 → ∀𝑦𝑦𝜑)
12:11: (∃𝑦𝑦𝜑 ↔ ∃𝑦𝜑)
13:10,12: (   𝑦𝑦 = 𝑥   ▶   (∃𝑥𝑦𝜑 𝑦𝜑)   )
14:13: (∀𝑦𝑦 = 𝑥 → (∃𝑥𝑦𝜑 ↔ ∃ 𝑦𝜑))
15:: (∀𝑦𝑦 = 𝑥 ↔ ∀𝑥𝑥 = 𝑦)
qed:14,15: (∀𝑥𝑥 = 𝑦 → (∃𝑥𝑦𝜑 ↔ ∃ 𝑦𝜑))
(Contributed by Alan Sare, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑦𝜑 ↔ ∃𝑦𝜑))
 
21.30.8  Virtual Deduction transcriptions of textbook proofs
 
Theoremsb5ALTVD 38171* The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 20 Excercise 3.a., which is sb5 2418, found in the "Answers to Starred Exercises" on page 457 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sb5ALT 37752 is sb5ALTVD 38171 without virtual deductions and was automatically derived from sb5ALTVD 38171.
1:: (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥]𝜑   )
2:: [𝑦 / 𝑥]𝑥 = 𝑦
3:1,2: (   [𝑦 / 𝑥]𝜑   ▶   [𝑦 / 𝑥](𝑥 = 𝑦 𝜑)   )
4:3: (   [𝑦 / 𝑥]𝜑   ▶   𝑥(𝑥 = 𝑦𝜑 )   )
5:4: ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑) )
6:: (   𝑥(𝑥 = 𝑦𝜑)   ▶   𝑥(𝑥 = 𝑦𝜑)   )
7:: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   (𝑥 = 𝑦𝜑)   )
8:7: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   𝜑   )
9:7: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   𝑥 = 𝑦   )
10:8,9: (   𝑥(𝑥 = 𝑦𝜑)   ,   (𝑥 = 𝑦𝜑 )   ▶   [𝑦 / 𝑥]𝜑   )
101:: ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
11:101,10: (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑 )
12:5,11: (([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑 )) ∧ (∃𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))
qed:12: ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑) )
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremvk15.4jVD 38172 The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Unit 15 Excercise 4.f. found in the "Answers to Starred Exercises" on page 442 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. The same proof may also be interpreted to be a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. vk15.4j 37755 is vk15.4jVD 38172 without virtual deductions and was automatically derived from vk15.4jVD 38172. Step numbers greater than 25 are additional steps necessary for the sequent calculus proof not contained in the Fitch-style proof. Otherwise, step i of the User's Proof corresponds to step i of the Fitch-style proof.
h1:: ¬ (∃𝑥¬ 𝜑 ∧ ∃𝑥(𝜓 ¬ 𝜒))
h2:: (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏 ))
h3:: ¬ ∀𝑥(𝜏𝜑)
4:: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∃𝑥¬ 𝜃   )
5:4: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥𝜃   )
6:3: 𝑥(𝜏 ∧ ¬ 𝜑)
7:: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜏 ∧ ¬ 𝜑)   )
8:7: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝜏   )
9:7: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ 𝜑   )
10:5: (   ¬ ∃𝑥¬ 𝜃   ▶   𝜃   )
11:10,8: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   (𝜃𝜏)   )
12:11: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥(𝜃𝜏)   )
13:12: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ ¬ ∃𝑥(𝜃𝜏)   )
14:2,13: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   ¬ ∀𝑥𝜒   )
140:: (∃𝑥¬ 𝜃 → ∀𝑥𝑥¬ 𝜃 )
141:140: (¬ ∃𝑥¬ 𝜃 → ∀𝑥¬ ∃𝑥 ¬ 𝜃)
142:: (∀𝑥𝜒 → ∀𝑥𝑥𝜒)
143:142: (¬ ∀𝑥𝜒 → ∀𝑥¬ ∀𝑥𝜒 )
144:6,14,141,143: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∀𝑥𝜒    )
15:1: (¬ ∃𝑥¬ 𝜑 ∨ ¬ ∃𝑥(𝜓 ∧ ¬ 𝜒))
16:9: (   ¬ ∃𝑥¬ 𝜃   ,   (𝜏 ∧ ¬ 𝜑)   ▶   𝑥¬ 𝜑   )
161:: (∃𝑥¬ 𝜑 → ∀𝑥𝑥¬ 𝜑 )
162:6,16,141,161: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜑    )
17:162: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ¬ ∃𝑥 ¬ 𝜑   )
18:15,17: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∃𝑥( 𝜓 ∧ ¬ 𝜒)   )
19:18: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥(𝜓 𝜒)   )
20:144: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜒    )
21:: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶   ¬ 𝜒   )
22:19: (   ¬ ∃𝑥¬ 𝜃   ▶   (𝜓𝜒 )   )
23:21,22: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶   ¬ 𝜓   )
24:23: (   ¬ ∃𝑥¬ 𝜃   ,   ¬ 𝜒   ▶    𝑥¬ 𝜓   )
240:: (∃𝑥¬ 𝜓 → ∀𝑥𝑥¬ 𝜓 )
241:20,24,141,240: (   ¬ ∃𝑥¬ 𝜃   ▶   𝑥¬ 𝜓    )
25:241: (   ¬ ∃𝑥¬ 𝜃   ▶   ¬ ∀𝑥𝜓    )
qed:25: (¬ ∃𝑥¬ 𝜃 → ¬ ∀𝑥𝜓)
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))    &   (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))    &    ¬ ∀𝑥(𝜏𝜑)       (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)
 
TheoremnotnotrALTVD 38173 The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Theorem 5 of Section 14 of [Margaris] p. 59 (which is notnotr 124). The same proof may also be interpreted as a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. notnotrALT 37756 is notnotrALTVD 38173 without virtual deductions and was automatically derived from notnotrALTVD 38173. Step i of the User's Proof corresponds to step i of the Fitch-style proof.
1:: (   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜑   )
2:: (¬ ¬ 𝜑 → (¬ 𝜑 → ¬ ¬ ¬ 𝜑))
3:1: (   ¬ ¬ 𝜑   ▶   𝜑 → ¬ ¬ ¬ 𝜑)   )
4:: ((¬ 𝜑 → ¬ ¬ ¬ 𝜑) → (¬ ¬ 𝜑 𝜑))
5:3: (   ¬ ¬ 𝜑   ▶   (¬ ¬ 𝜑𝜑)   )
6:5,1: (   ¬ ¬ 𝜑   ▶   𝜑   )
qed:6: (¬ ¬ 𝜑𝜑)
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ¬ 𝜑𝜑)
 
Theoremcon3ALTVD 38174 The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Theorem 7 of Section 14 of [Margaris] p. 60 ( which is con3 148). The same proof may also be interpreted to be a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. con3ALT2 37757 is con3ALTVD 38174 without virtual deductions and was automatically derived from con3ALTVD 38174. Step i of the User's Proof corresponds to step i of the Fitch-style proof.
1:: (   (𝜑𝜓)   ▶   (𝜑𝜓)   )
2:: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜑   )
3:: (¬ ¬ 𝜑𝜑)
4:2: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   𝜑   )
5:1,4: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   𝜓   )
6:: (𝜓 → ¬ ¬ 𝜓)
7:6,5: (   (𝜑𝜓)   ,   ¬ ¬ 𝜑   ▶   ¬ ¬ 𝜓   )
8:7: (   (𝜑𝜓)   ▶   (¬ ¬ 𝜑 → ¬ ¬ 𝜓 )   )
9:: ((¬ ¬ 𝜑 → ¬ ¬ 𝜓) → (¬ 𝜓 ¬ 𝜑))
10:8: (   (𝜑𝜓)   ▶   𝜓 → ¬ 𝜑)   )
qed:10: ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
 
21.30.9  Theorems proved using conjunction-form Virtual Deduction
 
TheoremelpwgdedVD 38175 Membership in a power class. Theorem 86 of [Suppes] p. 47. Derived from elpwg 4116. In form of VD deduction with 𝜑 and 𝜓 as variable virtual hypothesis collections based on Mario Carneiro's metavariable concept. elpwgded 37801 is elpwgdedVD 38175 using conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(   𝜑   ▶   𝐴 ∈ V   )    &   (   𝜓   ▶   𝐴𝐵   )       (   (   𝜑   ,   𝜓   )   ▶   𝐴 ∈ 𝒫 𝐵   )
 
Theoremsspwimp 38176 If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimp 38176, using conventional notation, was translated from virtual deduction form, sspwimpVD 38177, using a translation program. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
TheoremsspwimpVD 38177 The following User's Proof is a Virtual Deduction proof (see wvd1 37806) using conjunction-form virtual hypothesis collections. It was completed manually, but has the potential to be completed automatically by a tools program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimp 38176 is sspwimpVD 38177 without virtual deductions and was derived from sspwimpVD 38177. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (    .............. 𝑥 ∈ 𝒫 𝐴    ▶   𝑥 ∈ 𝒫 𝐴   )
3:2: (    .............. 𝑥 ∈ 𝒫 𝐴    ▶   𝑥𝐴   )
4:3,1: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
5:: 𝑥 ∈ V
6:4,5: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵    )
7:6: (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)    )
8:7: (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 𝒫 𝐵)   )
9:8: (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
qed:9: (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
Theoremsspwimpcf 38178 If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimpcf 38178, using conventional notation, was translated from its virtual deduction form, sspwimpcfVD 38179, using a translation program. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
TheoremsspwimpcfVD 38179 The following User's Proof is a Virtual Deduction proof (see wvd1 37806) using conjunction-form virtual hypothesis collections. It was completed automatically by a tools program which would invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimpcf 38178 is sspwimpcfVD 38179 without virtual deductions and was derived from sspwimpcfVD 38179. The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (    ........... 𝑥 ∈ 𝒫 𝐴    ▶   𝑥 ∈ 𝒫 𝐴   )
3:2: (    ........... 𝑥 ∈ 𝒫 𝐴    ▶   𝑥𝐴   )
4:3,1: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥𝐵   )
5:: 𝑥 ∈ V
6:4,5: (   (   𝐴𝐵   ,   𝑥 ∈ 𝒫 𝐴   )   ▶   𝑥 ∈ 𝒫 𝐵    )
7:6: (   𝐴𝐵   ▶   (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵)    )
8:7: (   𝐴𝐵   ▶   𝑥(𝑥 ∈ 𝒫 𝐴𝑥 𝒫 𝐵)   )
9:8: (   𝐴𝐵   ▶   𝒫 𝐴 ⊆ 𝒫 𝐵   )
qed:9: (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
TheoremsuctrALTcf 38180 The sucessor of a transitive class is transitive. suctrALTcf 38180, using conventional notation, was translated from virtual deduction form, suctrALTcfVD 38181, using a translation program. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(Tr 𝐴 → Tr suc 𝐴)
 
TheoremsuctrALTcfVD 38181 The following User's Proof is a Virtual Deduction proof (see wvd1 37806) using conjunction-form virtual hypothesis collections. The conjunction-form version of completeusersproof.cmd. It allows the User to avoid superflous virtual hypotheses. This proof was completed automatically by a tools program which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. suctrALTcf 38180 is suctrALTcfVD 38181 without virtual deductions and was derived automatically from suctrALTcfVD 38181. The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   Tr 𝐴   ▶   Tr 𝐴   )
2:: (   ......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑧𝑦𝑦 ∈ suc 𝐴)   )
3:2: (   ......... (𝑧𝑦𝑦 suc 𝐴)   ▶   𝑧𝑦   )
4:: (   ................................... ....... 𝑦𝐴   ▶   𝑦𝐴   )
5:1,3,4: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴) , 𝑦𝐴   )   ▶   𝑧𝐴   )
6:: 𝐴 ⊆ suc 𝐴
7:5,6: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴) , 𝑦𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
8:7: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)    )   ▶   (𝑦𝐴𝑧 ∈ suc 𝐴)   )
9:: (   ................................... ...... 𝑦 = 𝐴   ▶   𝑦 = 𝐴   )
10:3,9: (   ........ (   (𝑧𝑦𝑦 suc 𝐴), 𝑦 = 𝐴   )   ▶   𝑧𝐴   )
11:10,6: (   ........ (   (𝑧𝑦𝑦 suc 𝐴), 𝑦 = 𝐴   )   ▶   𝑧 ∈ suc 𝐴   )
12:11: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑦 = 𝐴𝑧 ∈ suc 𝐴)   )
13:2: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   𝑦 ∈ suc 𝐴   )
14:13: (   .......... (𝑧𝑦𝑦 suc 𝐴)   ▶   (𝑦𝐴𝑦 = 𝐴)   )
15:8,12,14: (   (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ suc 𝐴)    )   ▶   𝑧 ∈ suc 𝐴   )
16:15: (   Tr 𝐴   ▶   ((𝑧𝑦𝑦 suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
17:16: (   Tr 𝐴   ▶   𝑧𝑦((𝑧 𝑦𝑦 ∈ suc 𝐴) → 𝑧 ∈ suc 𝐴)   )
18:17: (   Tr 𝐴   ▶   Tr suc 𝐴   )
qed:18: (Tr 𝐴 → Tr suc 𝐴)
(Tr 𝐴 → Tr suc 𝐴)
 
21.30.10  Theorems with a VD proof in conventional notation derived from a VD proof
 
TheoremsuctrALT3 38182 The successor of a transitive class is transitive. suctrALT3 38182 is the completed proof in conventional notation of the Virtual Deduction proof http://us.metamath.org/other/completeusersproof/suctralt3vd.html. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 37806 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 19 used jaoded 37803). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 24 used dftr2 4682) . (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(Tr 𝐴 → Tr suc 𝐴)
 
TheoremsspwimpALT 38183 If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimpALT 38183 is the completed proof in conventional notation of the Virtual Deduction proof http://us.metamath.org/other/completeusersproof/sspwimpaltvd.html. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 37806 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 9 used elpwgded 37801). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 5 used elpwi 4117). (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
TheoremunisnALT 38184 A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. The User manually input on a mmj2 Proof Worksheet, without labels, all steps of unisnALT 38184 except 1, 11, 15, 21, and 30. With execution of the mmj2 unification command, mmj2 could find labels for all steps except for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15, 21, and 30) . mmj2 could not find reference theorems for those five steps because the hypothesis field of each of these steps was empty and none of those steps unifies with a theorem in set.mm. Each of these five steps is a semantic variation of a theorem in set.mm and is 2-step provable. mmj2 does not have the ability to automatically generate the semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis deduction whose hypothesis is a theorem in set.mm which unifies with the theorem in the Proof Worksheet. The stepprover.c program, which invokes mmj2, has this capability. stepprover.c automatically generated steps 1, 11, 15, 21, and 30, labeled all steps, and generated the RPN proof of unisnALT 38184. Roughly speaking, stepprover.c added to the Proof Worksheet a labeled duplicate step of each non-unifying theorem for each label in a text file, labels.txt, containing a list of labels provided by the User. Upon mmj2 unification, stepprover.c identified a label for each of the five theorems which 2-step proves it. For unisnALT 38184, the label list is a list of all 1-hypothesis propositional calculus deductions in set.mm. stepproverp.c is the same as stepprover.c except that it intermittently pauses during execution, allowing the User to observe the changes to a text file caused by the execution of particular statements of the program. (Contributed by Alan Sare, 19-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V        {𝐴} = 𝐴
 
21.30.11  Theorems with a proof in conventional notation derived from a VD proof

Theorems with a proof in conventional notation automatically derived by completeusersproof.c from a Virtual Deduction User's Proof.

 
TheoremnotnotrALT2 38185 Converse of double negation. Theorem *2.14 of [WhiteheadRussell] p. 102. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ¬ 𝜑𝜑)
 
TheoremsspwimpALT2 38186 If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in http://us.metamath.org/other/completeusersproof/sspwimpaltvd.html. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
 
Theoreme2ebindALT 38187 Absorption of an existential quantifier of a double existential quantifier of non-distinct variables. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in e2ebindVD 38170. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑦𝜑 ↔ ∃𝑦𝜑))
 
Theoremax6e2ndALT 38188* If at least two sets exist (dtru 4783) , then the same is true expressed in an alternate form similar to the form of ax6e 2238. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in ax6e2ndVD 38166. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theoremax6e2ndeqALT 38189* "At least two sets exist" expressed in the form of dtru 4783 is logically equivalent to the same expressed in a form similar to ax6e 2238 if dtru 4783 is false implies 𝑢 = 𝑣. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in ax6e2ndeqVD 38167. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theorem2sb5ndALT 38190* Equivalence for double substitution 2sb5 2431 without distinct 𝑥, 𝑦 requirement. 2sb5nd 37797 is derived from 2sb5ndVD 38168. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in 2sb5ndVD 38168. (Contributed by Alan Sare, 19-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
 
TheoremchordthmALT 38191* The intersecting chords theorem. If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA · PB and PC · PD are equal. The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to π. The result is proven by using chordthmlem5 24363 twice to show that PA · PB and PC · PD both equal BQ 2 PQ 2 . This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. Proven by David Moews on 28-Feb-2017 as chordthm 24364. http://us.metamath.org/other/completeusersproof/chordthmaltvd.html is a Virtual Deduction User's Proof transcription of chordthm 24364. That VD User's Proof was input into completeusersproof, automatically generating this chordthmALT 38191 Metamath proof. (Contributed by Alan Sare, 19-Sep-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝑃 ∈ ℂ)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑 → ((𝐴𝑃)𝐹(𝐵𝑃)) = π)    &   (𝜑 → ((𝐶𝑃)𝐹(𝐷𝑃)) = π)    &   (𝜑𝑄 ∈ ℂ)    &   (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))    &   (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐶𝑄)))    &   (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐷𝑄)))       (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
 
Theoremisosctrlem1ALT 38192 Lemma for isosctr 24351. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart http://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html. As it is verified by the Metamath program, isosctrlem1ALT 38192 verifies http://us.metamath.org/other/completeusersproof/isosctrlem1altvd.html. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)
 
Theoremiunconlem2 38193* The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart http://us.metamath.org/other/completeusersproof/iunconlem2vd.html. As it is verified by the Metamath program, iunconlem2 38193 verifies http://us.metamath.org/other/completeusersproof/iunconlem2vd.html. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜓 ↔ ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   ((𝜑𝑘𝐴) → 𝐵𝑋)    &   ((𝜑𝑘𝐴) → 𝑃𝐵)    &   ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Con)       (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Con)
 
TheoremiunconALT 38194* The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart http://us.metamath.org/other/completeusersproof/iunconaltvd.html. As it is verified by the Metamath program, iunconALT 38194 verifies http://us.metamath.org/other/completeusersproof/iunconaltvd.html. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐽 ∈ (TopOn‘𝑋))    &   ((𝜑𝑘𝐴) → 𝐵𝑋)    &   ((𝜑𝑘𝐴) → 𝑃𝐵)    &   ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Con)       (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Con)
 
Theoremsineq0ALT 38195 A complex number whose sine is zero is an integer multiple of π. The Virtual Deduction form of the proof is http://us.metamath.org/other/completeusersproof/sineq0altvd.html. The Metamath form of the proof is sineq0ALT 38195. The Virtual Deduction proof is based on Mario Carneiro's revision of Norm Megill's proof of sineq0 24077. The Virtual Deduction proof is verified by automatically transforming it into the Metamath form of the proof using completeusersproof, which is verified by the Metamath program. The proof of http://us.metamath.org/other/completeusersproof/sineq0altro.html is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ∈ ℂ → ((sin‘𝐴) = 0 ↔ (𝐴 / π) ∈ ℤ))
 
21.31  Mathbox for Glauco Siliprandi
 
21.31.1  Miscellanea
 
Theoremfnvinran 38196 the function value belongs to its codomain. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
(𝜑𝐹:𝐴𝐵)       ((𝜑𝐶𝐴) → (𝐹𝐶) ∈ 𝐵)
 
Theoremevth2f 38197* A version of evth2 22567 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐹    &   𝑦𝐹    &   𝑥𝑋    &   𝑦𝑋    &   𝑋 = 𝐽    &   𝐾 = (topGen‘ran (,))    &   (𝜑𝐽 ∈ Comp)    &   (𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝑋 ≠ ∅)       (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑥) ≤ (𝐹𝑦))
 
Theoremelunif 38198* A version of eluni 4375 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐴    &   𝑥𝐵       (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
 
Theoremrzalf 38199 A version of rzal 4025 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥 𝐴 = ∅       (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
 
Theoremfvelrnbf 38200 A version of fvelrnb 6153 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝐹       (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >