MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdifcom Structured version   Visualization version   GIF version

Theorem resdifcom 5335
Description: Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
resdifcom ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ↾ 𝐵)

Proof of Theorem resdifcom
StepHypRef Expression
1 indif1 3830 . 2 ((𝐴𝐶) ∩ (𝐵 × V)) = ((𝐴 ∩ (𝐵 × V)) ∖ 𝐶)
2 df-res 5050 . 2 ((𝐴𝐶) ↾ 𝐵) = ((𝐴𝐶) ∩ (𝐵 × V))
3 df-res 5050 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
43difeq1i 3686 . 2 ((𝐴𝐵) ∖ 𝐶) = ((𝐴 ∩ (𝐵 × V)) ∖ 𝐶)
51, 2, 43eqtr4ri 2643 1 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ↾ 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  Vcvv 3173  cdif 3537  cin 3539   × cxp 5036  cres 5040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-in 3547  df-res 5050
This theorem is referenced by:  setsfun0  15726
  Copyright terms: Public domain W3C validator