MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbres Structured version   Visualization version   GIF version

Theorem csbres 5320
Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbres 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)

Proof of Theorem csbres
StepHypRef Expression
1 df-res 5050 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
21csbeq2i 3945 . 2 𝐴 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V))
3 csbxp 5123 . . . . . 6 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V)
4 csbconstg 3512 . . . . . . 7 (𝐴 ∈ V → 𝐴 / 𝑥V = V)
54xpeq2d 5063 . . . . . 6 (𝐴 ∈ V → (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) = (𝐴 / 𝑥𝐶 × V))
63, 5syl5eq 2656 . . . . 5 (𝐴 ∈ V → 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V))
7 0xp 5122 . . . . . . 7 (∅ × V) = ∅
87a1i 11 . . . . . 6 𝐴 ∈ V → (∅ × V) = ∅)
9 csbprc 3932 . . . . . . 7 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
109xpeq1d 5062 . . . . . 6 𝐴 ∈ V → (𝐴 / 𝑥𝐶 × V) = (∅ × V))
11 csbprc 3932 . . . . . 6 𝐴 ∈ V → 𝐴 / 𝑥(𝐶 × V) = ∅)
128, 10, 113eqtr4rd 2655 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V))
136, 12pm2.61i 175 . . . 4 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V)
1413ineq2i 3773 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
15 csbin 3962 . . 3 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V))
16 df-res 5050 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
1714, 15, 163eqtr4i 2642 . 2 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
182, 17eqtri 2632 1 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1475  wcel 1977  Vcvv 3173  csb 3499  cin 3539  c0 3874   × cxp 5036  cres 5040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-opab 4644  df-xp 5044  df-res 5050
This theorem is referenced by:  csbwrecsg  32349
  Copyright terms: Public domain W3C validator