MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reeff1 Structured version   Visualization version   GIF version

Theorem reeff1 14689
Description: The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
reeff1 (exp ↾ ℝ):ℝ–1-1→ℝ+

Proof of Theorem reeff1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eff 14651 . . . . 5 exp:ℂ⟶ℂ
2 ffn 5958 . . . . 5 (exp:ℂ⟶ℂ → exp Fn ℂ)
31, 2ax-mp 5 . . . 4 exp Fn ℂ
4 ax-resscn 9872 . . . 4 ℝ ⊆ ℂ
5 fnssres 5918 . . . 4 ((exp Fn ℂ ∧ ℝ ⊆ ℂ) → (exp ↾ ℝ) Fn ℝ)
63, 4, 5mp2an 704 . . 3 (exp ↾ ℝ) Fn ℝ
7 fvres 6117 . . . . 5 (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥))
8 rpefcl 14673 . . . . 5 (𝑥 ∈ ℝ → (exp‘𝑥) ∈ ℝ+)
97, 8eqeltrd 2688 . . . 4 (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) ∈ ℝ+)
109rgen 2906 . . 3 𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) ∈ ℝ+
11 ffnfv 6295 . . 3 ((exp ↾ ℝ):ℝ⟶ℝ+ ↔ ((exp ↾ ℝ) Fn ℝ ∧ ∀𝑥 ∈ ℝ ((exp ↾ ℝ)‘𝑥) ∈ ℝ+))
126, 10, 11mpbir2an 957 . 2 (exp ↾ ℝ):ℝ⟶ℝ+
13 fvres 6117 . . . . 5 (𝑦 ∈ ℝ → ((exp ↾ ℝ)‘𝑦) = (exp‘𝑦))
147, 13eqeqan12d 2626 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) ↔ (exp‘𝑥) = (exp‘𝑦)))
15 reef11 14688 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp‘𝑥) = (exp‘𝑦) ↔ 𝑥 = 𝑦))
1615biimpd 218 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp‘𝑥) = (exp‘𝑦) → 𝑥 = 𝑦))
1714, 16sylbid 229 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) → 𝑥 = 𝑦))
1817rgen2a 2960 . 2 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) → 𝑥 = 𝑦)
19 dff13 6416 . 2 ((exp ↾ ℝ):ℝ–1-1→ℝ+ ↔ ((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((exp ↾ ℝ)‘𝑥) = ((exp ↾ ℝ)‘𝑦) → 𝑥 = 𝑦)))
2012, 18, 19mpbir2an 957 1 (exp ↾ ℝ):ℝ–1-1→ℝ+
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wss 3540  cres 5040   Fn wfn 5799  wf 5800  1-1wf1 5801  cfv 5804  cc 9813  cr 9814  +crp 11708  expce 14631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637
This theorem is referenced by:  reeff1o  24005  seff  37530
  Copyright terms: Public domain W3C validator