Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seff Structured version   Visualization version   GIF version

Theorem seff 37530
Description: Let set 𝑆 be the real or complex numbers. Then the exponential function restricted to 𝑆 is a mapping from 𝑆 to 𝑆. (Contributed by Steve Rodriguez, 6-Nov-2015.)
Hypothesis
Ref Expression
seff.s (𝜑𝑆 ∈ {ℝ, ℂ})
Assertion
Ref Expression
seff (𝜑 → (exp ↾ 𝑆):𝑆𝑆)

Proof of Theorem seff
StepHypRef Expression
1 seff.s . 2 (𝜑𝑆 ∈ {ℝ, ℂ})
2 elpri 4145 . 2 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
3 reeff1 14689 . . . . . 6 (exp ↾ ℝ):ℝ–1-1→ℝ+
4 f1f 6014 . . . . . 6 ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
5 rpssre 11719 . . . . . . 7 + ⊆ ℝ
6 fss 5969 . . . . . . 7 (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ)
75, 6mpan2 703 . . . . . 6 ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ)
83, 4, 7mp2b 10 . . . . 5 (exp ↾ ℝ):ℝ⟶ℝ
9 feq23 5942 . . . . . 6 ((𝑆 = ℝ ∧ 𝑆 = ℝ) → ((exp ↾ ℝ):𝑆𝑆 ↔ (exp ↾ ℝ):ℝ⟶ℝ))
109anidms 675 . . . . 5 (𝑆 = ℝ → ((exp ↾ ℝ):𝑆𝑆 ↔ (exp ↾ ℝ):ℝ⟶ℝ))
118, 10mpbiri 247 . . . 4 (𝑆 = ℝ → (exp ↾ ℝ):𝑆𝑆)
12 reseq2 5312 . . . . 5 (𝑆 = ℝ → (exp ↾ 𝑆) = (exp ↾ ℝ))
1312feq1d 5943 . . . 4 (𝑆 = ℝ → ((exp ↾ 𝑆):𝑆𝑆 ↔ (exp ↾ ℝ):𝑆𝑆))
1411, 13mpbird 246 . . 3 (𝑆 = ℝ → (exp ↾ 𝑆):𝑆𝑆)
15 eff 14651 . . . . . 6 exp:ℂ⟶ℂ
16 frel 5963 . . . . . . . . 9 (exp:ℂ⟶ℂ → Rel exp)
17 resdm 5361 . . . . . . . . 9 (Rel exp → (exp ↾ dom exp) = exp)
1815, 16, 17mp2b 10 . . . . . . . 8 (exp ↾ dom exp) = exp
1915fdmi 5965 . . . . . . . . 9 dom exp = ℂ
2019reseq2i 5314 . . . . . . . 8 (exp ↾ dom exp) = (exp ↾ ℂ)
2118, 20eqtr3i 2634 . . . . . . 7 exp = (exp ↾ ℂ)
2221feq1i 5949 . . . . . 6 (exp:ℂ⟶ℂ ↔ (exp ↾ ℂ):ℂ⟶ℂ)
2315, 22mpbi 219 . . . . 5 (exp ↾ ℂ):ℂ⟶ℂ
24 feq23 5942 . . . . . 6 ((𝑆 = ℂ ∧ 𝑆 = ℂ) → ((exp ↾ ℂ):𝑆𝑆 ↔ (exp ↾ ℂ):ℂ⟶ℂ))
2524anidms 675 . . . . 5 (𝑆 = ℂ → ((exp ↾ ℂ):𝑆𝑆 ↔ (exp ↾ ℂ):ℂ⟶ℂ))
2623, 25mpbiri 247 . . . 4 (𝑆 = ℂ → (exp ↾ ℂ):𝑆𝑆)
27 reseq2 5312 . . . . 5 (𝑆 = ℂ → (exp ↾ 𝑆) = (exp ↾ ℂ))
2827feq1d 5943 . . . 4 (𝑆 = ℂ → ((exp ↾ 𝑆):𝑆𝑆 ↔ (exp ↾ ℂ):𝑆𝑆))
2926, 28mpbird 246 . . 3 (𝑆 = ℂ → (exp ↾ 𝑆):𝑆𝑆)
3014, 29jaoi 393 . 2 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → (exp ↾ 𝑆):𝑆𝑆)
311, 2, 303syl 18 1 (𝜑 → (exp ↾ 𝑆):𝑆𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382   = wceq 1475  wcel 1977  wss 3540  {cpr 4127  dom cdm 5038  cres 5040  Rel wrel 5043  wf 5800  1-1wf1 5801  cc 9813  cr 9814  +crp 11708  expce 14631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator