Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-uhgr Structured version   Visualization version   GIF version

Definition df-uhgr 25724
 Description: Define the class of all undirected hypergraphs. An undirected hypergraph consists of a set 𝑣 (of "vertices") and a function 𝑒 (representing indexed "edges") into the powerset of this set (the empty set excluded). (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 8-Oct-2020.)
Assertion
Ref Expression
df-uhgr UHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})}
Distinct variable group:   𝑒,𝑔,𝑣

Detailed syntax breakdown of Definition df-uhgr
StepHypRef Expression
1 cuhgr 25722 . 2 class UHGraph
2 ve . . . . . . . 8 setvar 𝑒
32cv 1474 . . . . . . 7 class 𝑒
43cdm 5038 . . . . . 6 class dom 𝑒
5 vv . . . . . . . . 9 setvar 𝑣
65cv 1474 . . . . . . . 8 class 𝑣
76cpw 4108 . . . . . . 7 class 𝒫 𝑣
8 c0 3874 . . . . . . . 8 class
98csn 4125 . . . . . . 7 class {∅}
107, 9cdif 3537 . . . . . 6 class (𝒫 𝑣 ∖ {∅})
114, 10, 3wf 5800 . . . . 5 wff 𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})
12 vg . . . . . . 7 setvar 𝑔
1312cv 1474 . . . . . 6 class 𝑔
14 ciedg 25674 . . . . . 6 class iEdg
1513, 14cfv 5804 . . . . 5 class (iEdg‘𝑔)
1611, 2, 15wsbc 3402 . . . 4 wff [(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})
17 cvtx 25673 . . . . 5 class Vtx
1813, 17cfv 5804 . . . 4 class (Vtx‘𝑔)
1916, 5, 18wsbc 3402 . . 3 wff [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})
2019, 12cab 2596 . 2 class {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})}
211, 20wceq 1475 1 wff UHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})}
 Colors of variables: wff setvar class This definition is referenced by:  isuhgr  25726
 Copyright terms: Public domain W3C validator