Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-frgraregord013 Structured version   Visualization version   GIF version

Theorem av-frgraregord013 41549
Description: If a finite friendship graph is 𝐾-regular, then it must have order 0, 1 or 3. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
av-frgrareggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
av-frgraregord013 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))

Proof of Theorem av-frgraregord013
Dummy variables 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashcl 13009 . . 3 (𝑉 ∈ Fin → (#‘𝑉) ∈ ℕ0)
2 ax-1 6 . . . . 5 (((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → ((((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
3 3ioran 1049 . . . . . 6 (¬ ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3) ↔ (¬ (#‘𝑉) = 0 ∧ ¬ (#‘𝑉) = 1 ∧ ¬ (#‘𝑉) = 3))
4 df-ne 2782 . . . . . . . . . . . . 13 ((#‘𝑉) ≠ 0 ↔ ¬ (#‘𝑉) = 0)
5 hasheq0 13015 . . . . . . . . . . . . . . . . . 18 (𝑉 ∈ Fin → ((#‘𝑉) = 0 ↔ 𝑉 = ∅))
65necon3bid 2826 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ Fin → ((#‘𝑉) ≠ 0 ↔ 𝑉 ≠ ∅))
76biimpa 500 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ Fin ∧ (#‘𝑉) ≠ 0) → 𝑉 ≠ ∅)
8 elnnne0 11183 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑉) ∈ ℕ ↔ ((#‘𝑉) ∈ ℕ0 ∧ (#‘𝑉) ≠ 0))
9 df-ne 2782 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑉) ≠ 1 ↔ ¬ (#‘𝑉) = 1)
10 eluz2b3 11638 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝑉) ∈ (ℤ‘2) ↔ ((#‘𝑉) ∈ ℕ ∧ (#‘𝑉) ≠ 1))
11 hash2prde 13109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑉 ∈ Fin ∧ (#‘𝑉) = 2) → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
12 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 𝑎 ∈ V
1312a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑎𝑏𝑎 ∈ V)
14 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 𝑏 ∈ V
1514a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑎𝑏𝑏 ∈ V)
16 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑎𝑏𝑎𝑏)
1713, 15, 163jca 1235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏 → (𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑎𝑏))
18 av-frgrareggt1.v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 𝑉 = (Vtx‘𝐺)
1918eqeq1i 2615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑉 = {𝑎, 𝑏} ↔ (Vtx‘𝐺) = {𝑎, 𝑏})
2019biimpi 205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑉 = {𝑎, 𝑏} → (Vtx‘𝐺) = {𝑎, 𝑏})
21 nfrgr2v 41442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑎𝑏) ∧ (Vtx‘𝐺) = {𝑎, 𝑏}) → 𝐺 ∉ FriendGraph )
2217, 20, 21syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → 𝐺 ∉ FriendGraph )
23 df-nel 2783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
2422, 23sylib 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → ¬ 𝐺 ∈ FriendGraph )
2524pm2.21d 117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
2625com23 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
2726exlimivv 1847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
2811, 27syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑉 ∈ Fin ∧ (#‘𝑉) = 2) → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
2928ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑉 ∈ Fin → ((#‘𝑉) = 2 → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))))
3029com23 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((#‘𝑉) = 2 → (𝐺 ∈ FriendGraph → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))))
3130com14 94 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → ((#‘𝑉) = 2 → (𝑉 ∈ Fin → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))))
3231a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((#‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → ((#‘𝑉) = 2 → (𝑉 ∈ Fin → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))))
33323imp 1249 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((#‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → ((#‘𝑉) = 2 → (𝑉 ∈ Fin → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
3433com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((#‘𝑉) = 2 → (((#‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
35 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
3618, 35rusgrprop0 40767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
37 eluz2gt1 11636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((#‘𝑉) ∈ (ℤ‘2) → 1 < (#‘𝑉))
3837anim2i 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝐺 ∈ FriendGraph ∧ (#‘𝑉) ∈ (ℤ‘2)) → (𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉)))
3938ancoms 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (((#‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ) → (𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉)))
4018vdgn0frgrv2 41465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉) → (1 < (#‘𝑉) → ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
4140impancom 455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉)) → (𝑣𝑉 → ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
4241ralrimiv 2948 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝐺 ∈ FriendGraph ∧ 1 < (#‘𝑉)) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0)
43 eqeq2 2621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (𝐾 = 0 → (((VtxDeg‘𝐺)‘𝑣) = 𝐾 ↔ ((VtxDeg‘𝐺)‘𝑣) = 0))
4443ralbidv 2969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 ↔ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0))
45 r19.26 3046 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
46 nne 2786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 (¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0 ↔ ((VtxDeg‘𝐺)‘𝑣) = 0)
4746bicomi 213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0)
4847anbi1i 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ((((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ (¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
49 ancom 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ((¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ (((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
50 pm3.24 922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 ¬ (((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0)
5150bifal 1488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ((((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ ⊥)
5248, 49, 513bitri 285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ ⊥)
5352ralbii 2963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ ∀𝑣𝑉 ⊥)
54 r19.3rzv 4016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 (𝑉 ≠ ∅ → (⊥ ↔ ∀𝑣𝑉 ⊥))
55 falim 1489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 (⊥ → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
5654, 55syl6bir 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 (𝑉 ≠ ∅ → (∀𝑣𝑉 ⊥ → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
5756adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ⊥ → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
5857com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 (∀𝑣𝑉 ⊥ → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
5953, 58sylbi 206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
6045, 59sylbir 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
6160ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))
6244, 61syl6bi 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))
6362com4t 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))
6439, 42, 633syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((#‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))
6564ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((#‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
6665com25 97 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((#‘𝑉) ∈ (ℤ‘2) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (𝐺 ∈ FriendGraph → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
6766adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((¬ (#‘𝑉) = 3 ∧ ¬ (#‘𝑉) = 2) ∧ (#‘𝑉) ∈ (ℤ‘2)) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (𝐺 ∈ FriendGraph → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
6867com15 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (#‘𝑉) = 3 ∧ ¬ (#‘𝑉) = 2) ∧ (#‘𝑉) ∈ (ℤ‘2)) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
6968com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (#‘𝑉) = 3 ∧ ¬ (#‘𝑉) = 2) ∧ (#‘𝑉) ∈ (ℤ‘2)) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
70693ad2ant3 1077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (#‘𝑉) = 3 ∧ ¬ (#‘𝑉) = 2) ∧ (#‘𝑉) ∈ (ℤ‘2)) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
7136, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (#‘𝑉) = 3 ∧ ¬ (#‘𝑉) = 2) ∧ (#‘𝑉) ∈ (ℤ‘2)) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
7271impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (#‘𝑉) = 3 ∧ ¬ (#‘𝑉) = 2) ∧ (#‘𝑉) ∈ (ℤ‘2)) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))
7372impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 → (((¬ (#‘𝑉) = 3 ∧ ¬ (#‘𝑉) = 2) ∧ (#‘𝑉) ∈ (ℤ‘2)) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))
7418frrusgrord 41504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (#‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
7574imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (#‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))
76 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝐾 = 2 → 𝐾 = 2)
77 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝐾 = 2 → (𝐾 − 1) = (2 − 1))
7876, 77oveq12d 6567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐾 = 2 → (𝐾 · (𝐾 − 1)) = (2 · (2 − 1)))
7978oveq1d 6564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐾 = 2 → ((𝐾 · (𝐾 − 1)) + 1) = ((2 · (2 − 1)) + 1))
80 2m1e1 11012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (2 − 1) = 1
8180oveq2i 6560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (2 · (2 − 1)) = (2 · 1)
82 2t1e2 11053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (2 · 1) = 2
8381, 82eqtri 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (2 · (2 − 1)) = 2
8483oveq1i 6559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((2 · (2 − 1)) + 1) = (2 + 1)
85 2p1e3 11028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (2 + 1) = 3
8684, 85eqtri 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((2 · (2 − 1)) + 1) = 3
8779, 86syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐾 = 2 → ((𝐾 · (𝐾 − 1)) + 1) = 3)
8887eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐾 = 2 → ((#‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1) ↔ (#‘𝑉) = 3))
89 pm2.21 119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (¬ (#‘𝑉) = 3 → ((#‘𝑉) = 3 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
9089ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((¬ (#‘𝑉) = 3 ∧ ¬ (#‘𝑉) = 2) ∧ (#‘𝑉) ∈ (ℤ‘2)) → ((#‘𝑉) = 3 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
9190com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((#‘𝑉) = 3 → (((¬ (#‘𝑉) = 3 ∧ ¬ (#‘𝑉) = 2) ∧ (#‘𝑉) ∈ (ℤ‘2)) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
9288, 91syl6bi 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐾 = 2 → ((#‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1) → (((¬ (#‘𝑉) = 3 ∧ ¬ (#‘𝑉) = 2) ∧ (#‘𝑉) ∈ (ℤ‘2)) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))
9375, 92syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 2 → (((¬ (#‘𝑉) = 3 ∧ ¬ (#‘𝑉) = 2) ∧ (#‘𝑉) ∈ (ℤ‘2)) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))
9418av-frgrareg 41548 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))
9594imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))
9673, 93, 95mpjaod 395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (((¬ (#‘𝑉) = 3 ∧ ¬ (#‘𝑉) = 2) ∧ (#‘𝑉) ∈ (ℤ‘2)) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
9796exp32 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → (((¬ (#‘𝑉) = 3 ∧ ¬ (#‘𝑉) = 2) ∧ (#‘𝑉) ∈ (ℤ‘2)) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))
9897com34 89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → (((¬ (#‘𝑉) = 3 ∧ ¬ (#‘𝑉) = 2) ∧ (#‘𝑉) ∈ (ℤ‘2)) → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))
9998com23 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (((¬ (#‘𝑉) = 3 ∧ ¬ (#‘𝑉) = 2) ∧ (#‘𝑉) ∈ (ℤ‘2)) → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))
10099exp4c 634 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (¬ (#‘𝑉) = 3 → (¬ (#‘𝑉) = 2 → ((#‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))))
101100com34 89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (¬ (#‘𝑉) = 3 → ((#‘𝑉) ∈ (ℤ‘2) → (¬ (#‘𝑉) = 2 → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))))
102101com25 97 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → ((#‘𝑉) ∈ (ℤ‘2) → (¬ (#‘𝑉) = 2 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))))
103102ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → ((#‘𝑉) ∈ (ℤ‘2) → (¬ (#‘𝑉) = 2 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))))
104103com23 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → ((#‘𝑉) ∈ (ℤ‘2) → (¬ (#‘𝑉) = 2 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))))
105104com14 94 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((#‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (#‘𝑉) = 2 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))))
1061053imp 1249 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((#‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (#‘𝑉) = 2 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
107106com3r 85 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (¬ (#‘𝑉) = 2 → (((#‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
10834, 107pm2.61i 175 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((#‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))
1091083exp 1256 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))))
11010, 109sylbir 224 . . . . . . . . . . . . . . . . . . . . . . . 24 (((#‘𝑉) ∈ ℕ ∧ (#‘𝑉) ≠ 1) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))))
111110ex 449 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝑉) ∈ ℕ → ((#‘𝑉) ≠ 1 → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))))
1129, 111syl5bir 232 . . . . . . . . . . . . . . . . . . . . . 22 ((#‘𝑉) ∈ ℕ → (¬ (#‘𝑉) = 1 → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))))
113112com25 97 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑉) ∈ ℕ → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (#‘𝑉) = 1 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))))
1148, 113sylbir 224 . . . . . . . . . . . . . . . . . . . 20 (((#‘𝑉) ∈ ℕ0 ∧ (#‘𝑉) ≠ 0) → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (#‘𝑉) = 1 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))))
115114ex 449 . . . . . . . . . . . . . . . . . . 19 ((#‘𝑉) ∈ ℕ0 → ((#‘𝑉) ≠ 0 → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (#‘𝑉) = 1 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))))))
116115com23 84 . . . . . . . . . . . . . . . . . 18 ((#‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → ((#‘𝑉) ≠ 0 → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (#‘𝑉) = 1 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))))))
117116impd 446 . . . . . . . . . . . . . . . . 17 ((#‘𝑉) ∈ ℕ0 → ((𝑉 ∈ Fin ∧ (#‘𝑉) ≠ 0) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (#‘𝑉) = 1 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))))
118117com14 94 . . . . . . . . . . . . . . . 16 (𝑉 ≠ ∅ → ((𝑉 ∈ Fin ∧ (#‘𝑉) ≠ 0) → (𝐺 ∈ FriendGraph → ((#‘𝑉) ∈ ℕ0 → (¬ (#‘𝑉) = 1 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))))
1197, 118mpcom 37 . . . . . . . . . . . . . . 15 ((𝑉 ∈ Fin ∧ (#‘𝑉) ≠ 0) → (𝐺 ∈ FriendGraph → ((#‘𝑉) ∈ ℕ0 → (¬ (#‘𝑉) = 1 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))))
120119ex 449 . . . . . . . . . . . . . 14 (𝑉 ∈ Fin → ((#‘𝑉) ≠ 0 → (𝐺 ∈ FriendGraph → ((#‘𝑉) ∈ ℕ0 → (¬ (#‘𝑉) = 1 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))))
121120com14 94 . . . . . . . . . . . . 13 ((#‘𝑉) ∈ ℕ0 → ((#‘𝑉) ≠ 0 → (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (¬ (#‘𝑉) = 1 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))))
1224, 121syl5bir 232 . . . . . . . . . . . 12 ((#‘𝑉) ∈ ℕ0 → (¬ (#‘𝑉) = 0 → (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (¬ (#‘𝑉) = 1 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))))
123122com24 93 . . . . . . . . . . 11 ((#‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (¬ (#‘𝑉) = 0 → (¬ (#‘𝑉) = 1 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))))
1241233imp 1249 . . . . . . . . . 10 (((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) → (¬ (#‘𝑉) = 0 → (¬ (#‘𝑉) = 1 → (¬ (#‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
125124com25 97 . . . . . . . . 9 (((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) → (𝐺 RegUSGraph 𝐾 → (¬ (#‘𝑉) = 1 → (¬ (#‘𝑉) = 3 → (¬ (#‘𝑉) = 0 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))))
126125imp 444 . . . . . . . 8 ((((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → (¬ (#‘𝑉) = 1 → (¬ (#‘𝑉) = 3 → (¬ (#‘𝑉) = 0 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))
127126com14 94 . . . . . . 7 (¬ (#‘𝑉) = 0 → (¬ (#‘𝑉) = 1 → (¬ (#‘𝑉) = 3 → ((((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))
1281273imp 1249 . . . . . 6 ((¬ (#‘𝑉) = 0 ∧ ¬ (#‘𝑉) = 1 ∧ ¬ (#‘𝑉) = 3) → ((((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
1293, 128sylbi 206 . . . . 5 (¬ ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → ((((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
1302, 129pm2.61i 175 . . . 4 ((((#‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
1311303exp1 1275 . . 3 ((#‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))
1321, 131mpcom 37 . 2 (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))
1331323imp21 1269 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3o 1030  w3a 1031   = wceq 1475  wfal 1480  wex 1695  wcel 1977  wne 2780  wnel 2781  wral 2896  Vcvv 3173  c0 3874  {cpr 4127   class class class wbr 4583  cfv 5804  (class class class)co 6549  Fincfn 7841  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cmin 10145  cn 10897  2c2 10947  3c3 10948  0cn0 11169  0*cxnn0 11240  cuz 11563  #chash 12979  Vtxcvtx 25673   USGraph cusgr 40379  VtxDegcvtxdg 40681   RegUSGraph crusgr 40756   FriendGraph cfrgr 41428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-ac 8822  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-reps 13161  df-csh 13386  df-s2 13444  df-s3 13445  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309  df-vtx 25675  df-iedg 25676  df-uhgr 25724  df-ushgr 25725  df-upgr 25749  df-umgr 25750  df-edga 25793  df-uspgr 40380  df-usgr 40381  df-fusgr 40536  df-nbgr 40554  df-vtxdg 40682  df-rgr 40757  df-rusgr 40758  df-1wlks 40800  df-wlks 40801  df-wlkson 40802  df-trls 40901  df-trlson 40902  df-pths 40923  df-spths 40924  df-pthson 40925  df-spthson 40926  df-wwlks 41033  df-wwlksn 41034  df-wwlksnon 41035  df-wspthsn 41036  df-wspthsnon 41037  df-clwwlks 41185  df-clwwlksn 41186  df-conngr 41354  df-frgr 41429
This theorem is referenced by:  av-frgraregord13  41550
  Copyright terms: Public domain W3C validator