HomeHome Metamath Proof Explorer
Theorem List (p. 263 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 26201-26300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremisconngra1 26201* The property of being a connected graph. (Contributed by Alexander van der Vekens, 2-Dec-2017.)
((𝑉𝑋𝐸𝑌) → (𝑉 ConnGrph 𝐸 ↔ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘})∃𝑓𝑝 𝑓(𝑘(𝑉 PathOn 𝐸)𝑛)𝑝))
 
Theorem0conngra 26202 A class/graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.)
(𝐸𝑉 → ∅ ConnGrph 𝐸)
 
Theorem1conngra 26203 A class/graph with (at most) one vertex is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.)
(𝐸𝑉 → {𝐴} ConnGrph 𝐸)
 
Theoremcusconngra 26204 A complete (undirected simple) graph is connected. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
(𝑉 ComplUSGrph 𝐸𝑉 ConnGrph 𝐸)
 
17.1.5.5  Walks as words
 
Syntaxcwwlk 26205 Extend class notation with Walks (of a graph) as Word over the set of vertices.
class WWalks
 
Syntaxcwwlkn 26206 Extend class notation with Walks (of a graph) of a fixed length as Word over the set of vertices.
class WWalksN
 
Definitiondf-wwlk 26207* Define the set of all Walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) p(n) of the vertices in a walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n) as defined in df-wlk 26036. 𝑤 = ∅ has to be excluded because a walk always consists of at least one vertex, see wlkn0 26055. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
WWalks = (𝑣 ∈ V, 𝑒 ∈ V ↦ {𝑤 ∈ Word 𝑣 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝑒)})
 
Definitiondf-wwlkn 26208* Define the set of all Walks (in an undirected graph) of a fixed length n as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n) of the vertices in a walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n) as defined in df-wlk 26036. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
WWalksN = (𝑣 ∈ V, 𝑒 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑣 WWalks 𝑒) ∣ (#‘𝑤) = (𝑛 + 1)}))
 
Theoremwwlk 26209* The set of walks (in an undirected graph) as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
((𝑉𝑋𝐸𝑌) → (𝑉 WWalks 𝐸) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸)})
 
Theoremwwlkn 26210* The set of walks (in an undirected graph) of a fixed length as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
((𝑉𝑋𝐸𝑌𝑁 ∈ ℕ0) → ((𝑉 WWalksN 𝐸)‘𝑁) = {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑁 + 1)})
 
Theoremiswwlk 26211* Properties of a word to represent a walk (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.)
((𝑉𝑋𝐸𝑌) → (𝑊 ∈ (𝑉 WWalks 𝐸) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸)))
 
Theoremiswwlkn 26212 Properties of a word to represent a walk of a fixed length (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018.)
((𝑉𝑋𝐸𝑌𝑁 ∈ ℕ0) → (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ↔ (𝑊 ∈ (𝑉 WWalks 𝐸) ∧ (#‘𝑊) = (𝑁 + 1))))
 
Theoremwwlkprop 26213 Properties of a walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
(𝑃 ∈ (𝑉 WWalks 𝐸) → (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑃 ∈ Word 𝑉))
 
Theoremwwlknprop 26214 Properties of a walk of a fixed length (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 16-Jul-2018.)
(𝑃 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑁 ∈ ℕ0𝑃 ∈ Word 𝑉)))
 
Theoremwwlknimp 26215* Implications for a set being a walk of length n (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018.)
(𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸))
 
Theoremwwlksswrd 26216 Walks (represented by words) are words. (Contributed by Alexander van der Vekens, 17-Jul-2018.)
(𝑉 WWalks 𝐸) ⊆ Word 𝑉
 
Theoremwwlkn0 26217* A walk of length 0 is represented by a singleton word. (Contributed by Alexander van der Vekens, 20-Jul-2018.)
(𝑊 ∈ ((𝑉 WWalksN 𝐸)‘0) → ∃𝑣𝑉 𝑊 = ⟨“𝑣”⟩)
 
Theoremwlkiswwlk1 26218 The sequence of vertices in a walk is a walk as word in an undirected simple graph. (Contributed by Alexander van der Vekens, 20-Jul-2018.)
(𝑉 USGrph 𝐸 → (𝐹(𝑉 Walks 𝐸)𝑃𝑃 ∈ (𝑉 WWalks 𝐸)))
 
Theoremwlkiswwlk2lem1 26219* Lemma 1 for wlkiswwlk2 26225. (Contributed by Alexander van der Vekens, 20-Jul-2018.)
𝐹 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))       ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (#‘𝐹) = ((#‘𝑃) − 1))
 
Theoremwlkiswwlk2lem2 26220* Lemma 2 for wlkiswwlk2 26225. (Contributed by Alexander van der Vekens, 20-Jul-2018.)
𝐹 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))       (((#‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((#‘𝑃) − 1))) → (𝐹𝐼) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
 
Theoremwlkiswwlk2lem3 26221* Lemma 3 for wlkiswwlk2 26225. (Contributed by Alexander van der Vekens, 20-Jul-2018.)
𝐹 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))       ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → 𝑃:(0...(#‘𝐹))⟶𝑉)
 
Theoremwlkiswwlk2lem4 26222* Lemma 4 for wlkiswwlk2 26225. (Contributed by Alexander van der Vekens, 20-Jul-2018.)
𝐹 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))       ((𝑉 USGrph 𝐸𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
 
Theoremwlkiswwlk2lem5 26223* Lemma 5 for wlkiswwlk2 26225. (Contributed by Alexander van der Vekens, 21-Jul-2018.)
𝐹 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))       ((𝑉 USGrph 𝐸𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸𝐹 ∈ Word dom 𝐸))
 
Theoremwlkiswwlk2lem6 26224* Lemma 6 for wlkiswwlk2 26225. (Contributed by Alexander van der Vekens, 21-Jul-2018.)
𝐹 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}))       ((𝑉 USGrph 𝐸𝑃 ∈ Word 𝑉 ∧ 1 ≤ (#‘𝑃)) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
 
Theoremwlkiswwlk2 26225* A walk as word corresponds to the sequence of vertices in a walk in an undirected simple graph. (Contributed by Alexander van der Vekens, 21-Jul-2018.)
(𝑉 USGrph 𝐸 → (𝑃 ∈ (𝑉 WWalks 𝐸) → ∃𝑓 𝑓(𝑉 Walks 𝐸)𝑃))
 
Theoremwlkiswwlk 26226* A walk as word corresponds to a walk in an undirected simple graph. (Contributed by Alexander van der Vekens, 21-Jul-2018.)
(𝑉 USGrph 𝐸 → (∃𝑓 𝑓(𝑉 Walks 𝐸)𝑃𝑃 ∈ (𝑉 WWalks 𝐸)))
 
Theoremwlklniswwlkn1 26227 The sequence of vertices in a walk of length n is a walk as word of length n in an undirected simple graph. (Contributed by Alexander van der Vekens, 21-Jul-2018.)
(𝑉 USGrph 𝐸 → ((𝐹(𝑉 Walks 𝐸)𝑃 ∧ (#‘𝐹) = 𝑁) → 𝑃 ∈ ((𝑉 WWalksN 𝐸)‘𝑁)))
 
Theoremwlklniswwlkn2 26228* A walk of length n as word corresponds to the sequence of vertices in a walk of length n in an undirected simple graph. (Contributed by Alexander van der Vekens, 21-Jul-2018.)
(𝑉 USGrph 𝐸 → (𝑃 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → ∃𝑓(𝑓(𝑉 Walks 𝐸)𝑃 ∧ (#‘𝑓) = 𝑁)))
 
Theoremwlklniswwlkn 26229* A walk of length n as word corresponds to a walk with length n in an undirected simple graph. (Contributed by Alexander van der Vekens, 21-Jul-2018.)
(𝑉 USGrph 𝐸 → (∃𝑓(𝑓(𝑉 Walks 𝐸)𝑃 ∧ (#‘𝑓) = 𝑁) ↔ 𝑃 ∈ ((𝑉 WWalksN 𝐸)‘𝑁)))
 
Theoremwwlkiswwlkn 26230 A walk of a fixed length as word is a walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 17-Jul-2018.)
(𝑃 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → 𝑃 ∈ (𝑉 WWalks 𝐸))
 
Theoremwwlksswwlkn 26231 The walks of a fixed length as words are walks (in an undirected graph) as words. (Contributed by Alexander van der Vekens, 17-Jul-2018.)
((𝑉 WWalksN 𝐸)‘𝑁) ⊆ (𝑉 WWalks 𝐸)
 
Theoremwwlknimpb 26232 Basic implications for a set being a walk of length n (represented by a word). (Contributed by Alexander van der Vekens, 3-Oct-2018.)
(𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = (𝑁 + 1)))
 
Theoremwwlkn0s 26233* The set of all walks as words of length 0 is the set of all words of length 1 over the vertices. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
((𝑉𝑋𝐸𝑌) → ((𝑉 WWalksN 𝐸)‘0) = {𝑤 ∈ Word 𝑉 ∣ (#‘𝑤) = 1})
 
Theoremvfwlkniswwlkn 26234 If the edge function of a walk has length n, then the vertex function of the walk is a word representing the walk as word of length n. (Contributed by Alexander van der Vekens, 25-Aug-2018.)
((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑊)) = 𝑁)) → (2nd𝑊) ∈ ((𝑉 WWalksN 𝐸)‘𝑁))
 
Theorem2wlkeq 26235* Conditions for two walks (within the same graph) being the same. (Contributed by AV, 1-Jul-2018.) (Revised by AV, 16-May-2019.)
((𝐴 ∈ (𝑉 Walks 𝐸) ∧ 𝐵 ∈ (𝑉 Walks 𝐸) ∧ 𝑁 = (#‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
 
Theoremusg2wlkeq 26236* Conditions for two walks within the same undirected simple graph being the same. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 3-Jul-2018.)
((𝑉 USGrph 𝐸 ∧ (𝐴 ∈ (𝑉 Walks 𝐸) ∧ 𝐵 ∈ (𝑉 Walks 𝐸)) ∧ 𝑁 = (#‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (#‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦))))
 
Theoremusg2wlkeq2 26237 Conditions for which two walks within the same undirected simple graph are the same. It is sufficient that the vertices (in the same order) are identical. (Contributed by Alexander van der Vekens, 25-Aug-2018.)
(((𝑉 USGrph 𝐸𝑁 ∈ ℕ0) ∧ (𝑋 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑋)) = 𝑁) ∧ (𝑊 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑊)) = 𝑁)) → ((2nd𝑋) = (2nd𝑊) → 𝑋 = 𝑊))
 
Theoremwlknwwlknfun 26238* Lemma 1 for wlknwwlknbij2 26242. (Contributed by Alexander van der Vekens, 25-Aug-2018.)
𝑇 = {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁}    &   𝑊 = ((𝑉 WWalksN 𝐸)‘𝑁)    &   𝐹 = (𝑡𝑇 ↦ (2nd𝑡))       (𝑁 ∈ ℕ0𝐹:𝑇𝑊)
 
Theoremwlknwwlkninj 26239* Lemma 2 for wlknwwlknbij2 26242. (Contributed by Alexander van der Vekens, 25-Aug-2018.)
𝑇 = {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁}    &   𝑊 = ((𝑉 WWalksN 𝐸)‘𝑁)    &   𝐹 = (𝑡𝑇 ↦ (2nd𝑡))       ((𝑉 USGrph 𝐸𝑁 ∈ ℕ0) → 𝐹:𝑇1-1𝑊)
 
Theoremwlknwwlknsur 26240* Lemma 3 for wlknwwlknbij2 26242. (Contributed by Alexander van der Vekens, 25-Aug-2018.)
𝑇 = {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁}    &   𝑊 = ((𝑉 WWalksN 𝐸)‘𝑁)    &   𝐹 = (𝑡𝑇 ↦ (2nd𝑡))       ((𝑉 USGrph 𝐸𝑁 ∈ ℕ0) → 𝐹:𝑇onto𝑊)
 
Theoremwlknwwlknbij 26241* Lemma 4 for wlknwwlknbij2 26242. (Contributed by Alexander van der Vekens, 25-Aug-2018.)
𝑇 = {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁}    &   𝑊 = ((𝑉 WWalksN 𝐸)‘𝑁)    &   𝐹 = (𝑡𝑇 ↦ (2nd𝑡))       ((𝑉 USGrph 𝐸𝑁 ∈ ℕ0) → 𝐹:𝑇1-1-onto𝑊)
 
Theoremwlknwwlknbij2 26242* There is a bijection between the set of walks of a fixed length and the set of walks represented by words of the same length. (Contributed by Alexander van der Vekens, 25-Aug-2018.)
((𝑉 USGrph 𝐸𝑁 ∈ ℕ0) → ∃𝑓 𝑓:{𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁}–1-1-onto→((𝑉 WWalksN 𝐸)‘𝑁))
 
Theoremwlknwwlknen 26243* The set of walks of a fixed length and the set of walks represented by words are equinumerous. (Contributed by Alexander van der Vekens, 25-Aug-2018.)
((𝑉 USGrph 𝐸𝑁 ∈ ℕ0) → {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁} ≈ ((𝑉 WWalksN 𝐸)‘𝑁))
 
Theoremwlknwwlkneqs 26244* The set of walks of a fixed length and the set of walks represented by words have the same size. (Contributed by Alexander van der Vekens, 25-Aug-2018.)
((𝑉 USGrph 𝐸𝑁 ∈ ℕ0) → (#‘{𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁}) = (#‘((𝑉 WWalksN 𝐸)‘𝑁)))
 
Theoremwlkiswwlkfun 26245* Lemma 1 for wlkiswwlkbij2 26249. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Proof shortened by Alexander van der Vekens, 25-Aug-2018.)
𝑇 = {𝑝 ∈ (𝑉 Walks 𝐸) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}    &   𝑊 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃}    &   𝐹 = (𝑡𝑇 ↦ (2nd𝑡))       ((𝑃𝑉𝑁 ∈ ℕ0) → 𝐹:𝑇𝑊)
 
Theoremwlkiswwlkinj 26246* Lemma 2 for wlkiswwlkbij2 26249. (Contributed by Alexander van der Vekens, 23-Jul-2018.) (Proof shortened by Alexander van der Vekens, 25-Aug-2018.)
𝑇 = {𝑝 ∈ (𝑉 Walks 𝐸) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}    &   𝑊 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃}    &   𝐹 = (𝑡𝑇 ↦ (2nd𝑡))       ((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) → 𝐹:𝑇1-1𝑊)
 
Theoremwlkiswwlksur 26247* Lemma 3 for wlkiswwlkbij2 26249. (Contributed by Alexander van der Vekens, 23-Jul-2018.)
𝑇 = {𝑝 ∈ (𝑉 Walks 𝐸) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}    &   𝑊 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃}    &   𝐹 = (𝑡𝑇 ↦ (2nd𝑡))       ((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) → 𝐹:𝑇onto𝑊)
 
Theoremwlkiswwlkbij 26248* Lemma 4 for wlkiswwlkbij2 26249. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
𝑇 = {𝑝 ∈ (𝑉 Walks 𝐸) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}    &   𝑊 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃}    &   𝐹 = (𝑡𝑇 ↦ (2nd𝑡))       ((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) → 𝐹:𝑇1-1-onto𝑊)
 
Theoremwlkiswwlkbij2 26249* There is a bijection between the set of walks of a fixed length, starting at a fixed vertex, and the set of walks represented as words of the same length, starting at the same vertex. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
((𝑉 USGrph 𝐸𝑃𝑉𝑁 ∈ ℕ0) → ∃𝑓 𝑓:{𝑝 ∈ (𝑉 Walks 𝐸) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑃)}–1-1-onto→{𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃})
 
Theoremwwlkeq 26250* Equality of two walks (as words). (Contributed by Alexander van der Vekens, 4-Aug-2018.)
((𝑊 ∈ (𝑉 WWalks 𝐸) ∧ 𝑇 ∈ (𝑉 WWalks 𝐸)) → (𝑊 = 𝑇 ↔ ((#‘𝑊) = (#‘𝑇) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (𝑇𝑖))))
 
Theoremwwlknred 26251 Reduction of a walk (as word) by removing the trailing edge/vertex. (Contributed by Alexander van der Vekens, 4-Aug-2018.)
(𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘(𝑁 + 1)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ ((𝑉 WWalksN 𝐸)‘𝑁)))
 
Theoremwwlknext 26252 Extension of a walk (as word) by adding an edge/vertex. (Contributed by Alexander van der Vekens, 4-Aug-2018.)
((𝑇 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∧ 𝑆𝑉 ∧ {( lastS ‘𝑇), 𝑆} ∈ ran 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑉 WWalksN 𝐸)‘(𝑁 + 1)))
 
Theoremwwlknextbi 26253 Extension of a walk (as word) by adding an edge/vertex. (Contributed by Alexander van der Vekens, 5-Aug-2018.)
(((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {( lastS ‘𝑇), 𝑆} ∈ ran 𝐸)) → (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘(𝑁 + 1)) ↔ 𝑇 ∈ ((𝑉 WWalksN 𝐸)‘𝑁)))
 
Theoremwwlknredwwlkn 26254* For each walk (as word) of length at least 1 there is a shorter walk (as word). (Contributed by Alexander van der Vekens, 22-Aug-2018.)
(𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘(𝑁 + 1)) → ∃𝑦 ∈ ((𝑉 WWalksN 𝐸)‘𝑁)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {( lastS ‘𝑦), ( lastS ‘𝑊)} ∈ ran 𝐸)))
 
Theoremwwlknredwwlkn0 26255* For each walk (as word) of length at least 1 there is a shorter walk (as word) starting at the same vertex. (Contributed by Alexander van der Vekens, 22-Aug-2018.)
((𝑁 ∈ ℕ0𝑊 ∈ ((𝑉 WWalksN 𝐸)‘(𝑁 + 1))) → ((𝑊‘0) = 𝑃 ↔ ∃𝑦 ∈ ((𝑉 WWalksN 𝐸)‘𝑁)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑊)} ∈ ran 𝐸)))
 
Theoremwwlkextwrd 26256* Lemma 0 for wwlkextbij 26261. (Contributed by Alexander van der Vekens, 5-Aug-2018.)
𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = (𝑁 + 2) ∧ (𝑤 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑤)} ∈ ran 𝐸)}       (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → 𝐷 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘(𝑁 + 1)) ∣ ((𝑤 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑤)} ∈ ran 𝐸)})
 
Theoremwwlkextfun 26257* Lemma 1 for wwlkextbij 26261. (Contributed by Alexander van der Vekens, 7-Aug-2018.)
𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = (𝑁 + 2) ∧ (𝑤 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑤)} ∈ ran 𝐸)}    &   𝑅 = {𝑛𝑉 ∣ {( lastS ‘𝑊), 𝑛} ∈ ran 𝐸}    &   𝐹 = (𝑡𝐷 ↦ ( lastS ‘𝑡))       (𝑁 ∈ ℕ0𝐹:𝐷𝑅)
 
Theoremwwlkextinj 26258* Lemma 2 for wwlkextbij 26261. (Contributed by Alexander van der Vekens, 7-Aug-2018.)
𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = (𝑁 + 2) ∧ (𝑤 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑤)} ∈ ran 𝐸)}    &   𝑅 = {𝑛𝑉 ∣ {( lastS ‘𝑊), 𝑛} ∈ ran 𝐸}    &   𝐹 = (𝑡𝐷 ↦ ( lastS ‘𝑡))       (𝑁 ∈ ℕ0𝐹:𝐷1-1𝑅)
 
Theoremwwlkextsur 26259* Lemma 3 for wwlkextbij 26261. (Contributed by Alexander van der Vekens, 7-Aug-2018.)
𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = (𝑁 + 2) ∧ (𝑤 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑤)} ∈ ran 𝐸)}    &   𝑅 = {𝑛𝑉 ∣ {( lastS ‘𝑊), 𝑛} ∈ ran 𝐸}    &   𝐹 = (𝑡𝐷 ↦ ( lastS ‘𝑡))       (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → 𝐹:𝐷onto𝑅)
 
Theoremwwlkextbij0 26260* Lemma 4 for wwlkextbij 26261. (Contributed by Alexander van der Vekens, 7-Aug-2018.)
𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((#‘𝑤) = (𝑁 + 2) ∧ (𝑤 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑤)} ∈ ran 𝐸)}    &   𝑅 = {𝑛𝑉 ∣ {( lastS ‘𝑊), 𝑛} ∈ ran 𝐸}    &   𝐹 = (𝑡𝐷 ↦ ( lastS ‘𝑡))       (𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → 𝐹:𝐷1-1-onto𝑅)
 
Theoremwwlkextbij 26261* There is a bijection between the extensions of a walk (as word) by an edge and the set of vertices being connected to the trailing vertex of the walk. (Contributed by Alexander van der Vekens, 21-Aug-2018.)
(𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → ∃𝑓 𝑓:{𝑤 ∈ ((𝑉 WWalksN 𝐸)‘(𝑁 + 1)) ∣ ((𝑤 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑤)} ∈ ran 𝐸)}–1-1-onto→{𝑛𝑉 ∣ {( lastS ‘𝑊), 𝑛} ∈ ran 𝐸})
 
Theoremwwlkexthasheq 26262* The number of the extensions of a walk (as word) by an edge equals the number of vertices being connected to the trailing vertex of the walk. (Contributed by Alexander van der Vekens, 23-Aug-2018.) (Proof shortened by AV, 4-May-2021.)
(𝑊 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → (#‘{𝑤 ∈ ((𝑉 WWalksN 𝐸)‘(𝑁 + 1)) ∣ ((𝑤 substr ⟨0, (𝑁 + 1)⟩) = 𝑊 ∧ {( lastS ‘𝑊), ( lastS ‘𝑤)} ∈ ran 𝐸)}) = (#‘{𝑛𝑉 ∣ {( lastS ‘𝑊), 𝑛} ∈ ran 𝐸}))
 
Theoremwwlkm1edg 26263 Removing the trailing edge from a walk (as word) with at least one edge results in a walk. (Contributed by Alexander van der Vekens, 1-Aug-2018.)
((𝑊 ∈ (𝑉 WWalks 𝐸) ∧ 2 ≤ (#‘𝑊)) → (𝑊 substr ⟨0, ((#‘𝑊) − 1)⟩) ∈ (𝑉 WWalks 𝐸))
 
Theoremdisjxwwlks 26264* Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 29-Jul-2018.)
Disj 𝑦 ∈ ((𝑉 WWalksN 𝐸)‘𝑁){𝑥 ∈ Word 𝑉 ∣ ((𝑥 substr ⟨0, 𝑁⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ ran 𝐸)}
 
Theoremwwlknndef 26265 Conditions for WWalksN not being defined. (Contributed by Alexander van der Vekens, 30-Jul-2018.)
((𝑉 ∉ V ∨ 𝐸 ∉ V ∨ 𝑁 ∉ ℕ0) → ((𝑉 WWalksN 𝐸)‘𝑁) = ∅)
 
Theoremwwlknfi 26266 The number of walks represented by words of fixed length is finite if the number of vertices is finite (in the graph). (Contributed by Alexander van der Vekens, 30-Jul-2018.)
(𝑉 ∈ Fin → ((𝑉 WWalksN 𝐸)‘𝑁) ∈ Fin)
 
Theoremwlknfi 26267* The number of walks of fixed length is finite if the number of vertices is finite (in the graph). (Contributed by Alexander van der Vekens, 25-Aug-2018.)
((𝑉 USGrph 𝐸𝑁 ∈ ℕ0𝑉 ∈ Fin) → {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁} ∈ Fin)
 
Theoremwlknwwlknvbij 26268* There is a bijection between the set of walks of a fixed length and the set of walks represented by words of the same length and starting at the same vertex. (Contributed by Alexander van der Vekens, 30-Sep-2018.)
((𝑉 USGrph 𝐸𝑁 ∈ ℕ0𝑋𝑉) → ∃𝑓 𝑓:{𝑝 ∈ (𝑉 Walks 𝐸) ∣ ((#‘(1st𝑝)) = 𝑁 ∧ ((2nd𝑝)‘0) = 𝑋)}–1-1-onto→{𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑋})
 
Theoremwwlkextproplem1 26269 Lemma 1 for wwlkextprop 26272. (Contributed by Alexander van der Vekens, 31-Jul-2018.)
𝑋 = ((𝑉 WWalksN 𝐸)‘(𝑁 + 1))       ((𝑊𝑋𝑁 ∈ ℕ0) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑊‘0))
 
Theoremwwlkextproplem2 26270 Lemma 2 for wwlkextprop 26272. (Contributed by Alexander van der Vekens, 1-Aug-2018.)
𝑋 = ((𝑉 WWalksN 𝐸)‘(𝑁 + 1))       ((𝑊𝑋𝑁 ∈ ℕ0) → {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ ran 𝐸)
 
Theoremwwlkextproplem3 26271* Lemma 3 for wwlkextprop 26272. (Contributed by Alexander van der Vekens, 1-Aug-2018.)
𝑋 = ((𝑉 WWalksN 𝐸)‘(𝑁 + 1))    &   𝑌 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃}       ((𝑊𝑋 ∧ (𝑊‘0) = 𝑃𝑁 ∈ ℕ0) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ 𝑌)
 
Theoremwwlkextprop 26272* Adding additional properties to the set of walks (as words) of a fixed length starting at a fixed vertex. (Contributed by Alexander van der Vekens, 1-Aug-2018.)
𝑋 = ((𝑉 WWalksN 𝐸)‘(𝑁 + 1))    &   𝑌 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃}       (𝑁 ∈ ℕ0 → {𝑥𝑋 ∣ (𝑥‘0) = 𝑃} = {𝑥𝑋 ∣ ∃𝑦𝑌 ((𝑥 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ ran 𝐸)})
 
Theoremdisjxwwlkn 26273* Sets of walks (as words) extended by an edge are disjunct if each set contains extensions of distinct walks. (Contributed by Alexander van der Vekens, 21-Aug-2018.)
𝑋 = ((𝑉 WWalksN 𝐸)‘(𝑁 + 1))    &   𝑌 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃}       Disj 𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 substr ⟨0, 𝑀⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ ran 𝐸)}
 
Theoremhashwwlkext 26274* Number of walks (as words) extended by an edge as sum over the prefixes. (Contributed by Alexander van der Vekens, 21-Aug-2018.)
𝑋 = ((𝑉 WWalksN 𝐸)‘(𝑁 + 1))    &   𝑌 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃}       (𝑉 ∈ Fin → (#‘{𝑥𝑋 ∣ ∃𝑦𝑌 ((𝑥 substr ⟨0, 𝑀⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ ran 𝐸)}) = Σ𝑦𝑌 (#‘{𝑥𝑋 ∣ ((𝑥 substr ⟨0, 𝑀⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ ran 𝐸)}))
 
17.1.5.6  Closed walks
 
Syntaxcclwlk 26275 Extend class notation with Closed Walks (of a graph).
class ClWalks
 
Syntaxcclwwlk 26276 Extend class notation with Closed Walks (of a graph) as Word over the set of vertices.
class ClWWalks
 
Syntaxcclwwlkn 26277 Extend class notation with Closed Walks (of a graph) of a fixed length as Word over the set of vertices.
class ClWWalksN
 
Definitiondf-clwlk 26278* Define the set of all Closed Walks (in an undirected graph).

According to definition 4 in [Huneke] p. 2: "A walk of length n on (a graph) G is an ordered sequence v0 , v1 , ... v(n) of vertices such that v(i) and v(i+1) are neighbors (i.e are connected by an edge). We say the walk is closed if v(n) = v0".

According to the definition of a walk as two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices, a closed walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0).

Notice that by this definition, a single vertex is a closed walk of length 0, see also 0clwlk 26293! (Contributed by Alexander van der Vekens, 12-Mar-2018.)

ClWalks = (𝑣 ∈ V, 𝑒 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑣 Walks 𝑒)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))})
 
Definitiondf-clwwlk 26279* Define the set of all Closed Walks (in an undirected graph) as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlk 26278. Notice that the word does not contain the terminating vertex p(n) of the walk, because it is always equal to the first vertex of the closed walk.

Notice that by this definition, a single vertex cannot be represented as closed walk, since the word <" v "> with vertex v represents the walk "vv", which is a (closed) walk of length 1 (if there is an edge/loop from v to v). Therefore, a closed walk corresponds to a closed walk as word in an undirected graph only for walks of length at least 1, see clwlkisclwwlk2 26318. (Contributed by Alexander van der Vekens, 20-Mar-2018.)

ClWWalks = (𝑣 ∈ V, 𝑒 ∈ V ↦ {𝑤 ∈ Word 𝑣 ∣ (∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝑒 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ ran 𝑒)})
 
Definitiondf-clwwlkn 26280* Define the set of all Closed Walks (in an undirected graph) of a fixed length n as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlk 26278. (Contributed by Alexander van der Vekens, 20-Mar-2018.)
ClWWalksN = (𝑣 ∈ V, 𝑒 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑣 ClWWalks 𝑒) ∣ (#‘𝑤) = 𝑛}))
 
Theoremclwlk 26281* The set of closed walks (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.)
((𝑉𝑋𝐸𝑌) → (𝑉 ClWalks 𝐸) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))})
 
Theoremisclwlk0 26282 Properties of a pair of functions to be a closed walk (in an undirected graph) in terms of walks. (Contributed by Alexander van der Vekens, 15-Mar-2018.)
(((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝑉 ClWalks 𝐸)𝑃 ↔ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))
 
Theoremisclwlkg 26283 Generalisation of isclwlk0 26282: Properties of a pair of functions to be a closed walk (in an undirected graph) in terms of walks. (Contributed by Alexander van der Vekens, 24-Jun-2018.)
((𝑉𝑋𝐸𝑌) → (𝐹(𝑉 ClWalks 𝐸)𝑃 ↔ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))
 
Theoremisclwlk 26284* Properties of a pair of functions to be a closed walk (in an undirected graph). (Contributed by Alexander van der Vekens, 24-Jun-2018.)
((𝑉𝑋𝐸𝑌) → (𝐹(𝑉 ClWalks 𝐸)𝑃 ↔ ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))))))
 
Theoremclwlkiswlk 26285 A closed walk is a walk (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.)
(𝐹(𝑉 ClWalks 𝐸)𝑃𝐹(𝑉 Walks 𝐸)𝑃)
 
Theoremclwlkswlks 26286 Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 23-Jun-2018.)
(𝑊 ∈ (𝑉 ClWalks 𝐸) → 𝑊 ∈ (𝑉 Walks 𝐸))
 
Theoremclwlksarewlks 26287 Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 25-Aug-2018.)
(𝑉 ClWalks 𝐸) ⊆ (𝑉 Walks 𝐸)
 
Theoremwlkv0 26288 If there is a walk in an empty graph, it would be the pair consisting of empty sets. (Contributed by Alexander van der Vekens, 2-Sep-2018.)
(𝑊 ∈ (∅ Walks 𝐸) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))
 
Theoremwlk0 26289 There is no walk in an empty graph. (Contributed by Alexander van der Vekens, 2-Sep-2018.)
(∅ Walks 𝐸) = ∅
 
Theoremclwlk0 26290 There is no closed walk in an empty graph. (Contributed by Alexander van der Vekens, 2-Sep-2018.)
(∅ ClWalks 𝐸) = ∅
 
Theoremclwlkcomp 26291* A closed walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 24-Jun-2018.)
𝐹 = (1st𝑊)    &   𝑃 = (2nd𝑊)       ((𝑉𝑋𝐸𝑌𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (𝑉 ClWalks 𝐸) ↔ ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))))))
 
Theoremclwlkcompim 26292* Implications for the properties of the components of a closed walk. (Contributed by Alexander van der Vekens, 24-Jun-2018.)
𝐹 = (1st𝑊)    &   𝑃 = (2nd𝑊)       (𝑊 ∈ (𝑉 ClWalks 𝐸) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))
 
Theorem0clwlk 26293 A pair of an empty set (of edges) and a second set (of vertices) is a closed walk if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.)
(((𝑉𝑋𝐸𝑌) ∧ 𝑃𝑍) → (∅(𝑉 ClWalks 𝐸)𝑃𝑃:(0...0)⟶𝑉))
 
Theoremclwwlk 26294* The set of closed walks (in an undirected graph) as words over the set of vertices. (Contributed by Alexander van der Vekens, 20-Mar-2018.)
((𝑉𝑋𝐸𝑌) → (𝑉 ClWWalks 𝐸) = {𝑤 ∈ Word 𝑉 ∣ (∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑤), (𝑤‘0)} ∈ ran 𝐸)})
 
Theoremclwwlkn 26295* The set of closed walks (in an undirected graph) of a fixed length as words over the set of vertices. (Contributed by Alexander van der Vekens, 20-Mar-2018.)
((𝑉𝑋𝐸𝑌𝑁 ∈ ℕ0) → ((𝑉 ClWWalksN 𝐸)‘𝑁) = {𝑤 ∈ (𝑉 ClWWalks 𝐸) ∣ (#‘𝑤) = 𝑁})
 
Theoremisclwwlk 26296* Properties of a word to represent a closed walk (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Mar-2018.)
((𝑉𝑋𝐸𝑌) → (𝑊 ∈ (𝑉 ClWWalks 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ ran 𝐸)))
 
Theoremisclwwlkn 26297 Properties of a word to represent a closed walk of a fixed length (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.)
((𝑉𝑋𝐸𝑌𝑁 ∈ ℕ0) → (𝑊 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) ↔ (𝑊 ∈ (𝑉 ClWWalks 𝐸) ∧ (#‘𝑊) = 𝑁)))
 
Theoremclwwlkprop 26298 Properties of a closed walk (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 15-Mar-2018.)
(𝑃 ∈ (𝑉 ClWWalks 𝐸) → (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑃 ∈ Word 𝑉))
 
Theoremclwwlkgt0 26299 A closed walk in an undirected graph has a length of at least 2. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
(𝑉 USGrph 𝐸 → (𝑃 ∈ (𝑉 ClWWalks 𝐸) → 2 ≤ (#‘𝑃)))
 
Theoremclwwlknprop 26300 Properties of a closed walk of a fixed length as word. (Contributed by Alexander van der Vekens, 25-Mar-2018.)
(𝑃 ∈ ((𝑉 ClWWalksN 𝐸)‘𝑁) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑃 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0 ∧ (#‘𝑃) = 𝑁)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >