Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclwlk0 Structured version   Visualization version   GIF version

Theorem isclwlk0 26282
 Description: Properties of a pair of functions to be a closed walk (in an undirected graph) in terms of walks. (Contributed by Alexander van der Vekens, 15-Mar-2018.)
Assertion
Ref Expression
isclwlk0 (((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝑉 ClWalks 𝐸)𝑃 ↔ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))

Proof of Theorem isclwlk0
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4584 . . 3 (𝐹(𝑉 ClWalks 𝐸)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (𝑉 ClWalks 𝐸))
2 clwlk 26281 . . . . 5 ((𝑉𝑋𝐸𝑌) → (𝑉 ClWalks 𝐸) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))})
32adantr 480 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍)) → (𝑉 ClWalks 𝐸) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))})
43eleq2d 2673 . . 3 (((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍)) → (⟨𝐹, 𝑃⟩ ∈ (𝑉 ClWalks 𝐸) ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))}))
51, 4syl5bb 271 . 2 (((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝑉 ClWalks 𝐸)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))}))
6 breq12 4588 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓(𝑉 Walks 𝐸)𝑝𝐹(𝑉 Walks 𝐸)𝑃))
7 fveq1 6102 . . . . . . 7 (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0))
87adantl 481 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝‘0) = (𝑃‘0))
9 simpr 476 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑝 = 𝑃)
10 fveq2 6103 . . . . . . . 8 (𝑓 = 𝐹 → (#‘𝑓) = (#‘𝐹))
1110adantr 480 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → (#‘𝑓) = (#‘𝐹))
129, 11fveq12d 6109 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝‘(#‘𝑓)) = (𝑃‘(#‘𝐹)))
138, 12eqeq12d 2625 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑝‘0) = (𝑝‘(#‘𝑓)) ↔ (𝑃‘0) = (𝑃‘(#‘𝐹))))
146, 13anbi12d 743 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓))) ↔ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))
1514opelopabga 4913 . . 3 ((𝐹𝑊𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))} ↔ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))
1615adantl 481 . 2 (((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍)) → (⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉 Walks 𝐸)𝑝 ∧ (𝑝‘0) = (𝑝‘(#‘𝑓)))} ↔ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))
175, 16bitrd 267 1 (((𝑉𝑋𝐸𝑌) ∧ (𝐹𝑊𝑃𝑍)) → (𝐹(𝑉 ClWalks 𝐸)𝑃 ↔ (𝐹(𝑉 Walks 𝐸)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ⟨cop 4131   class class class wbr 4583  {copab 4642  ‘cfv 5804  (class class class)co 6549  0cc0 9815  #chash 12979   Walks cwalk 26026   ClWalks cclwlk 26275 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-wlk 26036  df-clwlk 26278 This theorem is referenced by:  isclwlkg  26283  clwlkiswlk  26285  0clwlk  26293
 Copyright terms: Public domain W3C validator