Step | Hyp | Ref
| Expression |
1 | | simp3 1056 |
. . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈
ℕ0) |
2 | | ovex 6577 |
. . . 4
⊢ (𝑉 WWalks 𝐸) ∈ V |
3 | | rabexg 4739 |
. . . 4
⊢ ((𝑉 WWalks 𝐸) ∈ V → {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑁 + 1)} ∈ V) |
4 | 2, 3 | mp1i 13 |
. . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑁 + 1)} ∈ V) |
5 | | oveq1 6556 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1)) |
6 | 5 | eqeq2d 2620 |
. . . . 5
⊢ (𝑛 = 𝑁 → ((#‘𝑤) = (𝑛 + 1) ↔ (#‘𝑤) = (𝑁 + 1))) |
7 | 6 | rabbidv 3164 |
. . . 4
⊢ (𝑛 = 𝑁 → {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑛 + 1)} = {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑁 + 1)}) |
8 | | eqid 2610 |
. . . 4
⊢ (𝑛 ∈ ℕ0
↦ {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑛 + 1)}) = (𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑛 + 1)}) |
9 | 7, 8 | fvmptg 6189 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑁 + 1)} ∈ V) → ((𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑛 + 1)})‘𝑁) = {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑁 + 1)}) |
10 | 1, 4, 9 | syl2anc 691 |
. 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑁 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑛 + 1)})‘𝑁) = {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑁 + 1)}) |
11 | | df-wwlkn 26208 |
. . . . . . 7
⊢ WWalksN
= (𝑣 ∈ V, 𝑒 ∈ V ↦ (𝑛 ∈ ℕ0
↦ {𝑤 ∈ (𝑣 WWalks 𝑒) ∣ (#‘𝑤) = (𝑛 + 1)})) |
12 | 11 | a1i 11 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → WWalksN = (𝑣 ∈ V, 𝑒 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑣 WWalks 𝑒) ∣ (#‘𝑤) = (𝑛 + 1)}))) |
13 | | oveq12 6558 |
. . . . . . . . 9
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑣 WWalks 𝑒) = (𝑉 WWalks 𝐸)) |
14 | | rabeq 3166 |
. . . . . . . . 9
⊢ ((𝑣 WWalks 𝑒) = (𝑉 WWalks 𝐸) → {𝑤 ∈ (𝑣 WWalks 𝑒) ∣ (#‘𝑤) = (𝑛 + 1)} = {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑛 + 1)}) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → {𝑤 ∈ (𝑣 WWalks 𝑒) ∣ (#‘𝑤) = (𝑛 + 1)} = {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑛 + 1)}) |
16 | 15 | mpteq2dv 4673 |
. . . . . . 7
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑣 WWalks 𝑒) ∣ (#‘𝑤) = (𝑛 + 1)}) = (𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑛 + 1)})) |
17 | 16 | adantl 481 |
. . . . . 6
⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑣 WWalks 𝑒) ∣ (#‘𝑤) = (𝑛 + 1)}) = (𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑛 + 1)})) |
18 | | elex 3185 |
. . . . . . 7
⊢ (𝑉 ∈ 𝑋 → 𝑉 ∈ V) |
19 | 18 | adantr 480 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝑉 ∈ V) |
20 | | elex 3185 |
. . . . . . 7
⊢ (𝐸 ∈ 𝑌 → 𝐸 ∈ V) |
21 | 20 | adantl 481 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐸 ∈ V) |
22 | | nn0ex 11175 |
. . . . . . . 8
⊢
ℕ0 ∈ V |
23 | 22 | mptex 6390 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
↦ {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑛 + 1)}) ∈ V |
24 | 23 | a1i 11 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑛 + 1)}) ∈ V) |
25 | 12, 17, 19, 21, 24 | ovmpt2d 6686 |
. . . . 5
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑉 WWalksN 𝐸) = (𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑛 + 1)})) |
26 | 25 | fveq1d 6105 |
. . . 4
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((𝑉 WWalksN 𝐸)‘𝑁) = ((𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑛 + 1)})‘𝑁)) |
27 | 26 | eqeq1d 2612 |
. . 3
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (((𝑉 WWalksN 𝐸)‘𝑁) = {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑁 + 1)} ↔ ((𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑛 + 1)})‘𝑁) = {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑁 + 1)})) |
28 | 27 | 3adant3 1074 |
. 2
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑁 ∈ ℕ0) → (((𝑉 WWalksN 𝐸)‘𝑁) = {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑁 + 1)} ↔ ((𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑛 + 1)})‘𝑁) = {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑁 + 1)})) |
29 | 10, 28 | mpbird 246 |
1
⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ∧ 𝑁 ∈ ℕ0) → ((𝑉 WWalksN 𝐸)‘𝑁) = {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑁 + 1)}) |