MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlknwwlknsur Structured version   Visualization version   GIF version

Theorem wlknwwlknsur 26240
Description: Lemma 3 for wlknwwlknbij2 26242. (Contributed by Alexander van der Vekens, 25-Aug-2018.)
Hypotheses
Ref Expression
wlknwwlknbij.t 𝑇 = {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁}
wlknwwlknbij.w 𝑊 = ((𝑉 WWalksN 𝐸)‘𝑁)
wlknwwlknbij.f 𝐹 = (𝑡𝑇 ↦ (2nd𝑡))
Assertion
Ref Expression
wlknwwlknsur ((𝑉 USGrph 𝐸𝑁 ∈ ℕ0) → 𝐹:𝑇onto𝑊)
Distinct variable groups:   𝐸,𝑝   𝑁,𝑝,𝑡   𝑡,𝑇   𝑉,𝑝   𝑡,𝑊   𝐹,𝑝   𝑇,𝑝   𝑊,𝑝
Allowed substitution hints:   𝐸(𝑡)   𝐹(𝑡)   𝑉(𝑡)

Proof of Theorem wlknwwlknsur
Dummy variables 𝑓 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlknwwlknbij.t . . . 4 𝑇 = {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁}
2 wlknwwlknbij.w . . . 4 𝑊 = ((𝑉 WWalksN 𝐸)‘𝑁)
3 wlknwwlknbij.f . . . 4 𝐹 = (𝑡𝑇 ↦ (2nd𝑡))
41, 2, 3wlknwwlknfun 26238 . . 3 (𝑁 ∈ ℕ0𝐹:𝑇𝑊)
54adantl 481 . 2 ((𝑉 USGrph 𝐸𝑁 ∈ ℕ0) → 𝐹:𝑇𝑊)
62eleq2i 2680 . . . . 5 (𝑝𝑊𝑝 ∈ ((𝑉 WWalksN 𝐸)‘𝑁))
7 wlklniswwlkn 26229 . . . . . . . . . . 11 (𝑉 USGrph 𝐸 → (∃𝑓(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 𝑁) ↔ 𝑝 ∈ ((𝑉 WWalksN 𝐸)‘𝑁)))
8 df-br 4584 . . . . . . . . . . . . 13 (𝑓(𝑉 Walks 𝐸)𝑝 ↔ ⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸))
9 vex 3176 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
10 vex 3176 . . . . . . . . . . . . . . . . 17 𝑝 ∈ V
119, 10op1st 7067 . . . . . . . . . . . . . . . 16 (1st ‘⟨𝑓, 𝑝⟩) = 𝑓
1211eqcomi 2619 . . . . . . . . . . . . . . 15 𝑓 = (1st ‘⟨𝑓, 𝑝⟩)
1312fveq2i 6106 . . . . . . . . . . . . . 14 (#‘𝑓) = (#‘(1st ‘⟨𝑓, 𝑝⟩))
1413eqeq1i 2615 . . . . . . . . . . . . 13 ((#‘𝑓) = 𝑁 ↔ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁)
15 elex 3185 . . . . . . . . . . . . . . 15 (⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸) → ⟨𝑓, 𝑝⟩ ∈ V)
16 eleq1 2676 . . . . . . . . . . . . . . . . . . 19 (𝑢 = ⟨𝑓, 𝑝⟩ → (𝑢 ∈ (𝑉 Walks 𝐸) ↔ ⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸)))
1716biimparc 503 . . . . . . . . . . . . . . . . . 18 ((⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) → 𝑢 ∈ (𝑉 Walks 𝐸))
1817adantr 480 . . . . . . . . . . . . . . . . 17 (((⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → 𝑢 ∈ (𝑉 Walks 𝐸))
19 fveq2 6103 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = ⟨𝑓, 𝑝⟩ → (1st𝑢) = (1st ‘⟨𝑓, 𝑝⟩))
2019fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = ⟨𝑓, 𝑝⟩ → (#‘(1st𝑢)) = (#‘(1st ‘⟨𝑓, 𝑝⟩)))
2120eqeq1d 2612 . . . . . . . . . . . . . . . . . . 19 (𝑢 = ⟨𝑓, 𝑝⟩ → ((#‘(1st𝑢)) = 𝑁 ↔ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁))
2221adantl 481 . . . . . . . . . . . . . . . . . 18 ((⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) → ((#‘(1st𝑢)) = 𝑁 ↔ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁))
2322biimpar 501 . . . . . . . . . . . . . . . . 17 (((⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → (#‘(1st𝑢)) = 𝑁)
24 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = ⟨𝑓, 𝑝⟩ → (2nd𝑢) = (2nd ‘⟨𝑓, 𝑝⟩))
259, 10op2nd 7068 . . . . . . . . . . . . . . . . . . . 20 (2nd ‘⟨𝑓, 𝑝⟩) = 𝑝
2624, 25syl6req 2661 . . . . . . . . . . . . . . . . . . 19 (𝑢 = ⟨𝑓, 𝑝⟩ → 𝑝 = (2nd𝑢))
2726adantl 481 . . . . . . . . . . . . . . . . . 18 ((⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) → 𝑝 = (2nd𝑢))
2827adantr 480 . . . . . . . . . . . . . . . . 17 (((⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → 𝑝 = (2nd𝑢))
2918, 23, 28jca31 555 . . . . . . . . . . . . . . . 16 (((⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → ((𝑢 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢)))
3029ex 449 . . . . . . . . . . . . . . 15 ((⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸) ∧ 𝑢 = ⟨𝑓, 𝑝⟩) → ((#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁 → ((𝑢 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢))))
3115, 30spcimedv 3265 . . . . . . . . . . . . . 14 (⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸) → ((#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁 → ∃𝑢((𝑢 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢))))
3231imp 444 . . . . . . . . . . . . 13 ((⟨𝑓, 𝑝⟩ ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st ‘⟨𝑓, 𝑝⟩)) = 𝑁) → ∃𝑢((𝑢 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢)))
338, 14, 32syl2anb 495 . . . . . . . . . . . 12 ((𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 𝑁) → ∃𝑢((𝑢 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢)))
3433exlimiv 1845 . . . . . . . . . . 11 (∃𝑓(𝑓(𝑉 Walks 𝐸)𝑝 ∧ (#‘𝑓) = 𝑁) → ∃𝑢((𝑢 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢)))
357, 34syl6bir 243 . . . . . . . . . 10 (𝑉 USGrph 𝐸 → (𝑝 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) → ∃𝑢((𝑢 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢))))
3635imp 444 . . . . . . . . 9 ((𝑉 USGrph 𝐸𝑝 ∈ ((𝑉 WWalksN 𝐸)‘𝑁)) → ∃𝑢((𝑢 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢)))
37 fveq2 6103 . . . . . . . . . . . . . 14 (𝑝 = 𝑢 → (1st𝑝) = (1st𝑢))
3837fveq2d 6107 . . . . . . . . . . . . 13 (𝑝 = 𝑢 → (#‘(1st𝑝)) = (#‘(1st𝑢)))
3938eqeq1d 2612 . . . . . . . . . . . 12 (𝑝 = 𝑢 → ((#‘(1st𝑝)) = 𝑁 ↔ (#‘(1st𝑢)) = 𝑁))
4039elrab 3331 . . . . . . . . . . 11 (𝑢 ∈ {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁} ↔ (𝑢 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑢)) = 𝑁))
4140anbi1i 727 . . . . . . . . . 10 ((𝑢 ∈ {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁} ∧ 𝑝 = (2nd𝑢)) ↔ ((𝑢 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢)))
4241exbii 1764 . . . . . . . . 9 (∃𝑢(𝑢 ∈ {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁} ∧ 𝑝 = (2nd𝑢)) ↔ ∃𝑢((𝑢 ∈ (𝑉 Walks 𝐸) ∧ (#‘(1st𝑢)) = 𝑁) ∧ 𝑝 = (2nd𝑢)))
4336, 42sylibr 223 . . . . . . . 8 ((𝑉 USGrph 𝐸𝑝 ∈ ((𝑉 WWalksN 𝐸)‘𝑁)) → ∃𝑢(𝑢 ∈ {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁} ∧ 𝑝 = (2nd𝑢)))
44 df-rex 2902 . . . . . . . 8 (∃𝑢 ∈ {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁}𝑝 = (2nd𝑢) ↔ ∃𝑢(𝑢 ∈ {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁} ∧ 𝑝 = (2nd𝑢)))
4543, 44sylibr 223 . . . . . . 7 ((𝑉 USGrph 𝐸𝑝 ∈ ((𝑉 WWalksN 𝐸)‘𝑁)) → ∃𝑢 ∈ {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁}𝑝 = (2nd𝑢))
461rexeqi 3120 . . . . . . 7 (∃𝑢𝑇 𝑝 = (2nd𝑢) ↔ ∃𝑢 ∈ {𝑝 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑝)) = 𝑁}𝑝 = (2nd𝑢))
4745, 46sylibr 223 . . . . . 6 ((𝑉 USGrph 𝐸𝑝 ∈ ((𝑉 WWalksN 𝐸)‘𝑁)) → ∃𝑢𝑇 𝑝 = (2nd𝑢))
48 fveq2 6103 . . . . . . . . 9 (𝑡 = 𝑢 → (2nd𝑡) = (2nd𝑢))
49 fvex 6113 . . . . . . . . 9 (2nd𝑢) ∈ V
5048, 3, 49fvmpt 6191 . . . . . . . 8 (𝑢𝑇 → (𝐹𝑢) = (2nd𝑢))
5150eqeq2d 2620 . . . . . . 7 (𝑢𝑇 → (𝑝 = (𝐹𝑢) ↔ 𝑝 = (2nd𝑢)))
5251rexbiia 3022 . . . . . 6 (∃𝑢𝑇 𝑝 = (𝐹𝑢) ↔ ∃𝑢𝑇 𝑝 = (2nd𝑢))
5347, 52sylibr 223 . . . . 5 ((𝑉 USGrph 𝐸𝑝 ∈ ((𝑉 WWalksN 𝐸)‘𝑁)) → ∃𝑢𝑇 𝑝 = (𝐹𝑢))
546, 53sylan2b 491 . . . 4 ((𝑉 USGrph 𝐸𝑝𝑊) → ∃𝑢𝑇 𝑝 = (𝐹𝑢))
5554ralrimiva 2949 . . 3 (𝑉 USGrph 𝐸 → ∀𝑝𝑊𝑢𝑇 𝑝 = (𝐹𝑢))
5655adantr 480 . 2 ((𝑉 USGrph 𝐸𝑁 ∈ ℕ0) → ∀𝑝𝑊𝑢𝑇 𝑝 = (𝐹𝑢))
57 dffo3 6282 . 2 (𝐹:𝑇onto𝑊 ↔ (𝐹:𝑇𝑊 ∧ ∀𝑝𝑊𝑢𝑇 𝑝 = (𝐹𝑢)))
585, 56, 57sylanbrc 695 1 ((𝑉 USGrph 𝐸𝑁 ∈ ℕ0) → 𝐹:𝑇onto𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cop 4131   class class class wbr 4583  cmpt 4643  wf 5800  ontowfo 5802  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  0cn0 11169  #chash 12979   USGrph cusg 25859   Walks cwalk 26026   WWalksN cwwlkn 26206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-usgra 25862  df-wlk 26036  df-wwlk 26207  df-wwlkn 26208
This theorem is referenced by:  wlknwwlknbij  26241
  Copyright terms: Public domain W3C validator