MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashwwlkext Structured version   Visualization version   GIF version

Theorem hashwwlkext 26274
Description: Number of walks (as words) extended by an edge as sum over the prefixes. (Contributed by Alexander van der Vekens, 21-Aug-2018.)
Hypotheses
Ref Expression
wwlkextprop.x 𝑋 = ((𝑉 WWalksN 𝐸)‘(𝑁 + 1))
wwlkextprop.y 𝑌 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃}
Assertion
Ref Expression
hashwwlkext (𝑉 ∈ Fin → (#‘{𝑥𝑋 ∣ ∃𝑦𝑌 ((𝑥 substr ⟨0, 𝑀⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ ran 𝐸)}) = Σ𝑦𝑌 (#‘{𝑥𝑋 ∣ ((𝑥 substr ⟨0, 𝑀⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ ran 𝐸)}))
Distinct variable groups:   𝑤,𝐸   𝑤,𝑁   𝑤,𝑃   𝑤,𝑉   𝑦,𝐸   𝑥,𝑁,𝑦,𝑤   𝑦,𝑃   𝑦,𝑋   𝑦,𝑌   𝑥,𝑀,𝑦   𝑥,𝑉,𝑦   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑃(𝑥)   𝐸(𝑥)   𝑀(𝑤)   𝑋(𝑤)   𝑌(𝑤)

Proof of Theorem hashwwlkext
StepHypRef Expression
1 wwlkextprop.y . . 3 𝑌 = {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃}
2 wwlknfi 26266 . . . 4 (𝑉 ∈ Fin → ((𝑉 WWalksN 𝐸)‘𝑁) ∈ Fin)
3 ssrab2 3650 . . . 4 {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃} ⊆ ((𝑉 WWalksN 𝐸)‘𝑁)
4 ssfi 8065 . . . 4 ((((𝑉 WWalksN 𝐸)‘𝑁) ∈ Fin ∧ {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃} ⊆ ((𝑉 WWalksN 𝐸)‘𝑁)) → {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃} ∈ Fin)
52, 3, 4sylancl 693 . . 3 (𝑉 ∈ Fin → {𝑤 ∈ ((𝑉 WWalksN 𝐸)‘𝑁) ∣ (𝑤‘0) = 𝑃} ∈ Fin)
61, 5syl5eqel 2692 . 2 (𝑉 ∈ Fin → 𝑌 ∈ Fin)
7 wwlkextprop.x . . . . 5 𝑋 = ((𝑉 WWalksN 𝐸)‘(𝑁 + 1))
8 wwlknfi 26266 . . . . 5 (𝑉 ∈ Fin → ((𝑉 WWalksN 𝐸)‘(𝑁 + 1)) ∈ Fin)
97, 8syl5eqel 2692 . . . 4 (𝑉 ∈ Fin → 𝑋 ∈ Fin)
10 rabfi 8070 . . . 4 (𝑋 ∈ Fin → {𝑥𝑋 ∣ ((𝑥 substr ⟨0, 𝑀⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ ran 𝐸)} ∈ Fin)
119, 10syl 17 . . 3 (𝑉 ∈ Fin → {𝑥𝑋 ∣ ((𝑥 substr ⟨0, 𝑀⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ ran 𝐸)} ∈ Fin)
1211adantr 480 . 2 ((𝑉 ∈ Fin ∧ 𝑦𝑌) → {𝑥𝑋 ∣ ((𝑥 substr ⟨0, 𝑀⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ ran 𝐸)} ∈ Fin)
137, 1disjxwwlkn 26273 . . 3 Disj 𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 substr ⟨0, 𝑀⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ ran 𝐸)}
1413a1i 11 . 2 (𝑉 ∈ Fin → Disj 𝑦𝑌 {𝑥𝑋 ∣ ((𝑥 substr ⟨0, 𝑀⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ ran 𝐸)})
156, 12, 14hashrabrex 14396 1 (𝑉 ∈ Fin → (#‘{𝑥𝑋 ∣ ∃𝑦𝑌 ((𝑥 substr ⟨0, 𝑀⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ ran 𝐸)}) = Σ𝑦𝑌 (#‘{𝑥𝑋 ∣ ((𝑥 substr ⟨0, 𝑀⟩) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑥)} ∈ ran 𝐸)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  {crab 2900  wss 3540  {cpr 4127  cop 4131  Disj wdisj 4553  ran crn 5039  cfv 5804  (class class class)co 6549  Fincfn 7841  0cc0 9815  1c1 9816   + caddc 9818  #chash 12979   lastS clsw 13147   substr csubstr 13150  Σcsu 14264   WWalksN cwwlkn 26206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-wwlk 26207  df-wwlkn 26208
This theorem is referenced by:  rusgranumwlks  26483
  Copyright terms: Public domain W3C validator