Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlknfi Structured version   Visualization version   GIF version

Theorem wwlknfi 26266
 Description: The number of walks represented by words of fixed length is finite if the number of vertices is finite (in the graph). (Contributed by Alexander van der Vekens, 30-Jul-2018.)
Assertion
Ref Expression
wwlknfi (𝑉 ∈ Fin → ((𝑉 WWalksN 𝐸)‘𝑁) ∈ Fin)

Proof of Theorem wwlknfi
Dummy variables 𝑖 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlkn 26210 . . . . . 6 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝑉 WWalksN 𝐸)‘𝑁) = {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑁 + 1)})
2 df-rab 2905 . . . . . . 7 {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑁 + 1)} = {𝑤 ∣ (𝑤 ∈ (𝑉 WWalks 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))}
32a1i 11 . . . . . 6 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ (𝑉 WWalks 𝐸) ∣ (#‘𝑤) = (𝑁 + 1)} = {𝑤 ∣ (𝑤 ∈ (𝑉 WWalks 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))})
4 iswwlk 26211 . . . . . . . . . 10 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑤 ∈ (𝑉 WWalks 𝐸) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸)))
543adant3 1074 . . . . . . . . 9 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (𝑉 WWalks 𝐸) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸)))
65anbi1d 737 . . . . . . . 8 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝑤 ∈ (𝑉 WWalks 𝐸) ∧ (#‘𝑤) = (𝑁 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))))
76abbidv 2728 . . . . . . 7 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → {𝑤 ∣ (𝑤 ∈ (𝑉 WWalks 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))})
8 3anan12 1044 . . . . . . . . . . 11 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ↔ (𝑤 ∈ Word 𝑉 ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸)))
98anbi1i 727 . . . . . . . . . 10 (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1)) ↔ ((𝑤 ∈ Word 𝑉 ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸)) ∧ (#‘𝑤) = (𝑁 + 1)))
10 anass 679 . . . . . . . . . 10 (((𝑤 ∈ Word 𝑉 ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸)) ∧ (#‘𝑤) = (𝑁 + 1)) ↔ (𝑤 ∈ Word 𝑉 ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))))
119, 10bitri 263 . . . . . . . . 9 (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1)) ↔ (𝑤 ∈ Word 𝑉 ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))))
1211abbii 2726 . . . . . . . 8 {𝑤 ∣ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1)))}
13 df-rab 2905 . . . . . . . 8 {𝑤 ∈ Word 𝑉 ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1)))}
1412, 13eqtr4i 2635 . . . . . . 7 {𝑤 ∣ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))} = {𝑤 ∈ Word 𝑉 ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))}
157, 14syl6eq 2660 . . . . . 6 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → {𝑤 ∣ (𝑤 ∈ (𝑉 WWalks 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))} = {𝑤 ∈ Word 𝑉 ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))})
161, 3, 153eqtrd 2648 . . . . 5 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝑉 WWalksN 𝐸)‘𝑁) = {𝑤 ∈ Word 𝑉 ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))})
1716adantr 480 . . . 4 (((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ 𝑉 ∈ Fin) → ((𝑉 WWalksN 𝐸)‘𝑁) = {𝑤 ∈ Word 𝑉 ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))})
18 peano2nn0 11210 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
19183ad2ant3 1077 . . . . . . . 8 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0)
2019anim2i 591 . . . . . . 7 ((𝑉 ∈ Fin ∧ (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0)) → (𝑉 ∈ Fin ∧ (𝑁 + 1) ∈ ℕ0))
2120ancoms 468 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ 𝑉 ∈ Fin) → (𝑉 ∈ Fin ∧ (𝑁 + 1) ∈ ℕ0))
22 wrdnfi 13193 . . . . . 6 ((𝑉 ∈ Fin ∧ (𝑁 + 1) ∈ ℕ0) → {𝑤 ∈ Word 𝑉 ∣ (#‘𝑤) = (𝑁 + 1)} ∈ Fin)
2321, 22syl 17 . . . . 5 (((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ 𝑉 ∈ Fin) → {𝑤 ∈ Word 𝑉 ∣ (#‘𝑤) = (𝑁 + 1)} ∈ Fin)
24 simpr 476 . . . . . . 7 (((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1)) → (#‘𝑤) = (𝑁 + 1))
2524rgenw 2908 . . . . . 6 𝑤 ∈ Word 𝑉(((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1)) → (#‘𝑤) = (𝑁 + 1))
26 ss2rab 3641 . . . . . 6 ({𝑤 ∈ Word 𝑉 ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))} ⊆ {𝑤 ∈ Word 𝑉 ∣ (#‘𝑤) = (𝑁 + 1)} ↔ ∀𝑤 ∈ Word 𝑉(((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1)) → (#‘𝑤) = (𝑁 + 1)))
2725, 26mpbir 220 . . . . 5 {𝑤 ∈ Word 𝑉 ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))} ⊆ {𝑤 ∈ Word 𝑉 ∣ (#‘𝑤) = (𝑁 + 1)}
28 ssfi 8065 . . . . 5 (({𝑤 ∈ Word 𝑉 ∣ (#‘𝑤) = (𝑁 + 1)} ∈ Fin ∧ {𝑤 ∈ Word 𝑉 ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))} ⊆ {𝑤 ∈ Word 𝑉 ∣ (#‘𝑤) = (𝑁 + 1)}) → {𝑤 ∈ Word 𝑉 ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))} ∈ Fin)
2923, 27, 28sylancl 693 . . . 4 (((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ 𝑉 ∈ Fin) → {𝑤 ∈ Word 𝑉 ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((#‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ ran 𝐸) ∧ (#‘𝑤) = (𝑁 + 1))} ∈ Fin)
3017, 29eqeltrd 2688 . . 3 (((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ 𝑉 ∈ Fin) → ((𝑉 WWalksN 𝐸)‘𝑁) ∈ Fin)
3130ex 449 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑉 ∈ Fin → ((𝑉 WWalksN 𝐸)‘𝑁) ∈ Fin))
32 wwlknndef 26265 . . . . 5 ((𝑉 ∉ V ∨ 𝐸 ∉ V ∨ 𝑁 ∉ ℕ0) → ((𝑉 WWalksN 𝐸)‘𝑁) = ∅)
33 3ioran 1049 . . . . . 6 (¬ (𝑉 ∉ V ∨ 𝐸 ∉ V ∨ 𝑁 ∉ ℕ0) ↔ (¬ 𝑉 ∉ V ∧ ¬ 𝐸 ∉ V ∧ ¬ 𝑁 ∉ ℕ0))
34 nnel 2892 . . . . . . 7 𝑉 ∉ V ↔ 𝑉 ∈ V)
35 nnel 2892 . . . . . . 7 𝐸 ∉ V ↔ 𝐸 ∈ V)
36 nnel 2892 . . . . . . 7 𝑁 ∉ ℕ0𝑁 ∈ ℕ0)
3734, 35, 363anbi123i 1244 . . . . . 6 ((¬ 𝑉 ∉ V ∧ ¬ 𝐸 ∉ V ∧ ¬ 𝑁 ∉ ℕ0) ↔ (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0))
3833, 37sylbb 208 . . . . 5 (¬ (𝑉 ∉ V ∨ 𝐸 ∉ V ∨ 𝑁 ∉ ℕ0) → (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0))
3932, 38nsyl4 155 . . . 4 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝑉 WWalksN 𝐸)‘𝑁) = ∅)
40 0fin 8073 . . . . 5 ∅ ∈ Fin
4140a1i 11 . . . 4 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → ∅ ∈ Fin)
4239, 41eqeltrd 2688 . . 3 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝑉 WWalksN 𝐸)‘𝑁) ∈ Fin)
4342a1d 25 . 2 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑉 ∈ Fin → ((𝑉 WWalksN 𝐸)‘𝑁) ∈ Fin))
4431, 43pm2.61i 175 1 (𝑉 ∈ Fin → ((𝑉 WWalksN 𝐸)‘𝑁) ∈ Fin)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∨ w3o 1030   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {cab 2596   ≠ wne 2780   ∉ wnel 2781  ∀wral 2896  {crab 2900  Vcvv 3173   ⊆ wss 3540  ∅c0 3874  {cpr 4127  ran crn 5039  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  0cc0 9815  1c1 9816   + caddc 9818   − cmin 10145  ℕ0cn0 11169  ..^cfzo 12334  #chash 12979  Word cword 13146   WWalks cwwlk 26205   WWalksN cwwlkn 26206 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-wwlk 26207  df-wwlkn 26208 This theorem is referenced by:  wlknfi  26267  hashwwlkext  26274  rusgranumwlks  26483  clwlknclwlkdifnum  26488
 Copyright terms: Public domain W3C validator