Home Metamath Proof ExplorerTheorem List (p. 353 of 424) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-27159) Hilbert Space Explorer (27160-28684) Users' Mathboxes (28685-42360)

Theorem List for Metamath Proof Explorer - 35201-35300   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremcdlemkuu 35201* Convert between function and operation forms of 𝑌. TODO: Use operation form everywhere. (Contributed by NM, 6-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))    &   𝑄 = (𝑆𝐷)    &   𝑍 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷))))))       ((𝐷𝑇𝐺𝑇) → (𝐷𝑌𝐺) = (𝑍𝐺))

Theoremcdlemk31 35202* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. Part of attempt to simplify hypotheses. (Contributed by NM, 17-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝑏𝑇𝑁𝑇) ∧ 𝐺𝑇) ∧ (((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑏𝑌𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) (((𝑆𝑏)‘𝑃) (𝑅‘(𝐺𝑏)))))

Theoremcdlemk32 35203* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. Part of attempt to simplify hypotheses. (Contributed by NM, 17-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝑏𝑇𝑁𝑇) ∧ 𝐺𝑇) ∧ (((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑏𝑌𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))

Theoremcdlemkuel-3 35204* Part of proof of Lemma K of [Crawley] p. 118. Conditions for the sigma2 (p) function to be a translation. TODO: combine cdlemkj 35169? (Contributed by NM, 11-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝐷𝑌𝐺) ∈ 𝑇)

Theoremcdlemkuv2-3N 35205* Part of proof of Lemma K of [Crawley] p. 118. Line 16 on p. 119 for i = 1, where sigma2 (p) is 𝑌, f1 is 𝐷, and k1 is 𝑂. (Contributed by NM, 6-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) (((𝑆𝐷)‘𝑃) (𝑅‘(𝐺𝐷)))))

Theoremcdlemk18-3N 35206* Part of proof of Lemma K of [Crawley] p. 118. Line 22 on p. 119. 𝑁, 𝑌, 𝑂, 𝐷 are k, sigma2 (p), k1, f1. (Contributed by NM, 7-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝐷𝑌𝐹)‘𝑃) = (𝑁𝑃))

Theoremcdlemk22-3 35207* Part of proof of Lemma K of [Crawley] p. 118. Lines 26-27, p. 119 for i=1 and j=2. (Contributed by NM, 7-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝐶𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝐶 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐶) ≠ (𝑅𝐷)))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃))

Theoremcdlemk23-3 35208* Part of proof of Lemma K of [Crawley] p. 118. Eliminate the (𝑅𝐶) ≠ (𝑅𝐷) requirement from cdlemk22-3 35207. (Contributed by NM, 7-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ ((𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐶)) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃))

Theoremcdlemk24-3 35209* Part of proof of Lemma K of [Crawley] p. 118. Eliminate the (𝑅𝑥) ≠ (𝑅𝐶) requirement from cdlemk23-3 35208 using (𝑅𝐶) = (𝑅𝐷). (Contributed by NM, 7-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ ((𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐶) = (𝑅𝐷)) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃))

Theoremcdlemk25-3 35210* Part of proof of Lemma K of [Crawley] p. 118. Eliminate the (𝑅𝐶) = (𝑅𝐷) requirement from cdlemk24-3 35209. (Contributed by NM, 7-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇𝑥𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ ((𝑅𝑥) ≠ (𝑅𝐷) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝑥)))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃))

Theoremcdlemk26b-3 35211* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 14-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑥𝑇 ((𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑥) ≠ (𝑅𝐹) ∧ (𝑅𝑥) ≠ (𝑅𝐺)) ∧ (𝑥𝑌𝐺) ∈ 𝑇))

Theoremcdlemk26-3 35212* Part of proof of Lemma K of [Crawley] p. 118. Eliminate the 𝑥 requirements from cdlemk25-3 35210. (Contributed by NM, 10-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃))

Theoremcdlemk27-3 35213* Part of proof of Lemma K of [Crawley] p. 118. Eliminate the 𝑃 from the conclusion of cdlemk25-3 35210. (Contributed by NM, 10-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (𝐺𝑇𝐶𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝐶) ∧ (𝑅𝐶) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷))) → (𝐷𝑌𝐺) = (𝐶𝑌𝐺))

Theoremcdlemk28-3 35214* Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 14-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → ∃𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺)))

Theoremcdlemk33N 35215* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. Part of attempt to simplify hypotheses. TODO: not needed, is embodied in cdlemk34 35216. (Contributed by NM, 18-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺)))       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑏𝑌𝐺)‘𝑃))))

Theoremcdlemk34 35216* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. Part of attempt to simplify hypotheses. (Contributed by NM, 18-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = ((𝑃 (𝑅𝐺)) (((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹)))) (𝑅‘(𝐺𝑏)))))))

Theoremcdlemk29-3 35217* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 14-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺)))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑋𝑇)

Theoremcdlemk35 35218* Part of proof of Lemma K of [Crawley] p. 118. cdlemk29-3 35217 with shorter hypotheses. (Contributed by NM, 18-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑋𝑇)

Theoremcdlemk36 35219* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 18-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝑋𝑃) = 𝑌)

Theoremcdlemk37 35220* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 18-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝑋𝑃) (𝑃 (𝑅𝐺)))

Theoremcdlemk38 35221* Part of proof of Lemma K of [Crawley] p. 118. Line 31, p. 119. TODO: derive more directly with r19.23 3004? (Contributed by NM, 19-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑋𝑃) (𝑃 (𝑅𝐺)))

Theoremcdlemk39 35222* Part of proof of Lemma K of [Crawley] p. 118. Line 31, p. 119. Trace-preserving property of tau, represented by 𝑋. (Contributed by NM, 19-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑌))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝑋) (𝑅𝐺))

Theoremcdlemk40 35223* TODO: fix comment. (Contributed by NM, 31-Jul-2013.)
𝑋 = (𝑧𝑇 𝜑)    &   𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))       (𝐺𝑇 → (𝑈𝐺) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))

Theoremcdlemk40t 35224* TODO: fix comment. (Contributed by NM, 31-Jul-2013.)
𝑋 = (𝑧𝑇 𝜑)    &   𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))       ((𝐹 = 𝑁𝐺𝑇) → (𝑈𝐺) = 𝐺)

Theoremcdlemk40f 35225* TODO: fix comment. (Contributed by NM, 31-Jul-2013.)
𝑋 = (𝑧𝑇 𝜑)    &   𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))       ((𝐹𝑁𝐺𝑇) → (𝑈𝐺) = 𝐺 / 𝑔𝑋)

Theoremcdlemk41 35226* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 19-Jul-2013.)
𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))       (𝐺𝑇𝐺 / 𝑔𝑌 = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏)))))

Theoremcdlemkfid1N 35227 Lemma for cdlemkfid3N 35231. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑃 (𝑅𝐺)) ((𝐹𝑃) (𝑅‘(𝐺𝐹)))) = (𝐺𝑃))

Theoremcdlemkid1 35228 Lemma for cdlemkid 35242. (Contributed by NM, 24-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → (𝑍 (𝑅𝑏)) = (𝑃 (𝑅𝑏)))

Theoremcdlemkfid2N 35229 Lemma for cdlemkfid3N 35231. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹 = 𝑁) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏𝑇) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝑍 = (𝑏𝑃))

Theoremcdlemkid2 35230* Lemma for cdlemkid 35242. (Contributed by NM, 24-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵) ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵)))) → 𝐺 / 𝑔𝑌 = 𝑃)

Theoremcdlemkfid3N 35231* TODO: is this useful or should it be deleted? (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹 = 𝑁) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇 ∧ (𝑏𝑇𝑏 ≠ ( I ↾ 𝐵))) ∧ ((𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → 𝐺 / 𝑔𝑌 = (𝐺𝑃))

Theoremcdlemky 35232* Part of proof of Lemma K of [Crawley] p. 118. TODO: clean up (𝑏𝑌𝐺) stuff. 𝑉 represents 𝑌 in cdlemk31 35202. (Contributed by NM, 21-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑉 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝐺 / 𝑔𝑌 = ((𝑏𝑉𝐺)‘𝑃))

Theoremcdlemkyu 35233* Convert between function and explicit forms. 𝐶 represents 𝑍 in cdlemkuu 35201. TODO: Clean all this up. (Contributed by NM, 21-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑉 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))    &   𝑄 = (𝑆𝑏)    &   𝐶 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝑏))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝐺 / 𝑔𝑌 = ((𝐶𝐺)‘𝑃))

Theoremcdlemkyuu 35234* cdlemkyu 35233 with some hypotheses eliminated. TODO: Clean all this up. (Contributed by NM, 21-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝐶 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑏)‘𝑃) (𝑅‘(𝑒𝑏))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → 𝐺 / 𝑔𝑌 = ((𝐶𝐺)‘𝑃))

Theoremcdlemk11ta 35235* Part of proof of Lemma K of [Crawley] p. 118. Lemma for Eq. 5, p. 119. 𝐺, 𝐼 stand for g, h. TODO: fix comment. (Contributed by NM, 21-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝐶 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑏)‘𝑃) (𝑅‘(𝑒𝑏))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))) → 𝐺 / 𝑔𝑌 (𝐼 / 𝑔𝑌 (𝑅‘(𝐼𝐺))))

Theoremcdlemk19ylem 35236* Lemma for cdlemk19y 35238. (Contributed by NM, 30-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝐶 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑏)‘𝑃) (𝑅‘(𝑒𝑏))))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → 𝐹 / 𝑔𝑌 = (𝑁𝑃))

Theoremcdlemk11tb 35237* Part of proof of Lemma K of [Crawley] p. 118. Lemma for Eq. 5, p. 119. 𝐺, 𝐼 stand for g, h. cdlemk11ta 35235 with hypotheses removed. TODO: Can this be proved directly with no quantification? (Contributed by NM, 21-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))) → 𝐺 / 𝑔𝑌 (𝐼 / 𝑔𝑌 (𝑅‘(𝐼𝐺))))

Theoremcdlemk19y 35238* cdlemk19 35175 with simpler hypotheses. TODO: Clean all this up. (Contributed by NM, 30-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → 𝐹 / 𝑔𝑌 = (𝑁𝑃))

Theoremcdlemkid3N 35239* Lemma for cdlemkid 35242. (Contributed by NM, 25-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → 𝐺 / 𝑔𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → (𝑧𝑃) = 𝑃)))

Theoremcdlemkid4 35240* Lemma for cdlemkid 35242. (Contributed by NM, 25-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → 𝐺 / 𝑔𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = ( I ↾ 𝐵))))

Theoremcdlemkid5 35241* Lemma for cdlemkid 35242. (Contributed by NM, 25-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → 𝐺 / 𝑔𝑋𝑇)

Theoremcdlemkid 35242* The value of the tau function (in Lemma K of [Crawley] p. 118) on the identity relation. (Contributed by NM, 25-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝐺 = ( I ↾ 𝐵))) → 𝐺 / 𝑔𝑋 = ( I ↾ 𝐵))

Theoremcdlemk35s 35243* Substitution version of cdlemk35 35218. (Contributed by NM, 22-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺 / 𝑔𝑋𝑇)

Theoremcdlemk35s-id 35244* Substitution version of cdlemk35 35218. (Contributed by NM, 26-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺 / 𝑔𝑋𝑇)

Theoremcdlemk39s 35245* Substitution version of cdlemk39 35222. TODO: Can any commonality with cdlemk35s 35243 be exploited? (Contributed by NM, 23-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐺 / 𝑔𝑋) (𝑅𝐺))

Theoremcdlemk39s-id 35246* Substitution version of cdlemk39 35222 with non-identity requirement on 𝐺 removed. TODO: Can any commonality with cdlemk35s 35243 be exploited? (Contributed by NM, 26-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ 𝐺𝑇𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐺 / 𝑔𝑋) (𝑅𝐺))

Theoremcdlemk42 35247* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 20-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐺 / 𝑔𝑋𝑃) = 𝐺 / 𝑔𝑌)

Theoremcdlemk19xlem 35248* Lemma for cdlemk19x 35249. (Contributed by NM, 30-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))) → (𝐹 / 𝑔𝑋𝑃) = (𝑁𝑃))

Theoremcdlemk19x 35249* cdlemk19 35175 with simpler hypotheses. TODO: Clean all this up. (Contributed by NM, 30-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 / 𝑔𝑋𝑃) = (𝑁𝑃))

Theoremcdlemk42yN 35250* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 20-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐺 / 𝑔𝑋𝑃) = ((𝑃 (𝑅𝐺)) (𝑍 (𝑅‘(𝐺𝑏)))))

Theoremcdlemk11tc 35251* Part of proof of Lemma K of [Crawley] p. 118. Lemma for Eq. 5, p. 119. 𝐺, 𝐼 stand for g, h. TODO: fix comment. (Contributed by NM, 21-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐼)))) → (𝐺 / 𝑔𝑋𝑃) ((𝐼 / 𝑔𝑋𝑃) (𝑅‘(𝐼𝐺))))

Theoremcdlemk11t 35252* Part of proof of Lemma K of [Crawley] p. 118. Eq. 5, line 36, p. 119. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. (Contributed by NM, 21-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (𝐺 / 𝑔𝑋𝑃) ((𝐼 / 𝑔𝑋𝑃) (𝑅‘(𝐼𝐺))))

Theoremcdlemk45 35253* Part of proof of Lemma K of [Crawley] p. 118. Line 37, p. 119. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. They do not explicitly mention the requirement (𝐺𝐼) ≠ ( I ∣ ‘𝐵). (Contributed by NM, 22-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → ((𝐺𝐼) / 𝑔𝑋𝑃) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺)))

Theoremcdlemk46 35254* Part of proof of Lemma K of [Crawley] p. 118. Line 38 (last line), p. 119. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. (Contributed by NM, 22-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → ((𝐺𝐼) / 𝑔𝑋𝑃) ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)))

Theoremcdlemk47 35255* Part of proof of Lemma K of [Crawley] p. 118. Line 2, p. 120. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. (Contributed by NM, 22-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → ((𝐺𝐼) / 𝑔𝑋𝑃) = (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺))))

Theoremcdlemk48 35256* Part of proof of Lemma K of [Crawley] p. 118. Line 4, p. 120. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. (Contributed by NM, 22-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋)))

Theoremcdlemk49 35257* Part of proof of Lemma K of [Crawley] p. 118. Line 5, p. 120. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. (Contributed by NM, 23-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)))

Theoremcdlemk50 35258* Part of proof of Lemma K of [Crawley] p. 118. Line 6, p. 120. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. TODO: Combine into cdlemk52 35260? (Contributed by NM, 23-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋))))

Theoremcdlemk51 35259* Part of proof of Lemma K of [Crawley] p. 118. Line 6, p. 120. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. TODO: Combine into cdlemk52 35260? (Contributed by NM, 23-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) → (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼 / 𝑔𝑋)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺 / 𝑔𝑋))) (((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)) ((𝐼 / 𝑔𝑋𝑃) (𝑅𝐺))))

Theoremcdlemk52 35260* Part of proof of Lemma K of [Crawley] p. 118. Line 6, p. 120. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. (Contributed by NM, 23-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋)‘𝑃) = ((𝐺𝐼) / 𝑔𝑋𝑃))

Theoremcdlemk53a 35261* Lemma for cdlemk53 35263. (Contributed by NM, 26-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝐺𝐼) / 𝑔𝑋 = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))

Theoremcdlemk53b 35262* Lemma for cdlemk53 35263. (Contributed by NM, 26-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝐺𝐼) / 𝑔𝑋 = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))

Theoremcdlemk53 35263* Part of proof of Lemma K of [Crawley] p. 118. Line 7, p. 120. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. (Contributed by NM, 26-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐼𝑇 ∧ (𝑅𝐺) ≠ (𝑅𝐼))) → (𝐺𝐼) / 𝑔𝑋 = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))

Theoremcdlemk54 35264* Part of proof of Lemma K of [Crawley] p. 118. Line 10, p. 120. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. (Contributed by NM, 26-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → ((𝐺𝐼) / 𝑔𝑋𝑗 / 𝑔𝑋) = ((𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋) ∘ 𝑗 / 𝑔𝑋))

Theoremcdlemk55a 35265* Lemma for cdlemk55 35267. (Contributed by NM, 26-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼)) ∧ 𝑗𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑗) ≠ (𝑅𝐺) ∧ (𝑅𝑗) ≠ (𝑅‘(𝐺𝐼))))) → (𝐺𝐼) / 𝑔𝑋 = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))

Theoremcdlemk55b 35266* Lemma for cdlemk55 35267. (Contributed by NM, 26-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝐼𝑇 ∧ (𝑅𝐺) = (𝑅𝐼))) → (𝐺𝐼) / 𝑔𝑋 = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))

Theoremcdlemk55 35267* Part of proof of Lemma K of [Crawley] p. 118. Line 11, p. 120. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. (Contributed by NM, 26-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝐼) / 𝑔𝑋 = (𝐺 / 𝑔𝑋𝐼 / 𝑔𝑋))

TheoremcdlemkyyN 35268* Part of proof of Lemma K of [Crawley] p. 118. TODO: clean up (𝑏𝑌𝐺) stuff. (Contributed by NM, 21-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))    &   𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))    &   𝑉 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))       (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → (𝐺 / 𝑔𝑋𝑃) = ((𝑏𝑉𝐺)‘𝑃))

Theoremcdlemk43N 35269* Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 31-Jul-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))    &   𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹𝑇𝑁𝑇𝐹𝑁) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑏𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)))) → ((𝑈𝐺)‘𝑃) = 𝐺 / 𝑔𝑌)

Theoremcdlemk35u 35270* Substitution version of cdlemk35 35218. (Contributed by NM, 31-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))    &   𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈𝐺) ∈ 𝑇)

Theoremcdlemk55u1 35271* Lemma for cdlemk55u 35272. (Contributed by NM, 31-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))    &   𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ (((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈‘(𝐺𝐼)) = ((𝑈𝐺) ∘ (𝑈𝐼)))

Theoremcdlemk55u 35272* Part of proof of Lemma K of [Crawley] p. 118. Line 11, p. 120. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. (Contributed by NM, 31-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))    &   𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇𝐼𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈‘(𝐺𝐼)) = ((𝑈𝐺) ∘ (𝑈𝐼)))

Theoremcdlemk39u1 35273* Lemma for cdlemk39u 35274. (Contributed by NM, 31-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))    &   𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹𝑁𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))

Theoremcdlemk39u 35274* Part of proof of Lemma K of [Crawley] p. 118. Line 31, p. 119. Trace-preserving property of the value of tau, represented by (𝑈𝐺). (Contributed by NM, 31-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))    &   𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))

Theoremcdlemk19u1 35275* cdlemk19 35175 with simpler hypotheses. TODO: Clean all this up. (Contributed by NM, 31-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))    &   𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝐹𝑁𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐹)‘𝑃) = (𝑁𝑃))

Theoremcdlemk19u 35276* Part of Lemma K of [Crawley] p. 118. Line 12, p. 120, "f (exponent) tau = k". We represent f, k, tau with 𝐹, 𝑁, 𝑈. (Contributed by NM, 31-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))    &   𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈𝐹) = 𝑁)

Theoremcdlemk56 35277* Part of Lemma K of [Crawley] p. 118. Line 11, p. 120, "tau is in Delta" i.e. 𝑈 is a trace-preserving endormorphism. (Contributed by NM, 31-Jul-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))    &   𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑈𝐸)

Theoremcdlemk19w 35278* Use a fixed element to eliminate 𝑃 in cdlemk19u 35276. (Contributed by NM, 1-Aug-2013.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &    = (oc‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑃 = ( 𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))    &   𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → (𝑈𝐹) = 𝑁)

Theoremcdlemk56w 35279* Use a fixed element to eliminate 𝑃 in cdlemk56 35277. (Contributed by NM, 1-Aug-2013.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &    = (oc‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑃 = ( 𝑊)    &   𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))    &   𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))    &   𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → (𝑈𝐸 ∧ (𝑈𝐹) = 𝑁))

Theoremcdlemk 35280* Lemma K of [Crawley] p. 118. Final result, lines 11 and 12 on p. 120: given two translations f and k with the same trace, there exists a trace-preserving endomorphism tau whose value at f is k. We use 𝐹, 𝑁, and 𝑢 to represent f, k, and tau. (Contributed by NM, 1-Aug-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)

Theoremtendoex 35281* Generalization of Lemma K of [Crawley] p. 118, cdlemk 35280. TODO: can this be used to shorten uses of cdlemk 35280? (Contributed by NM, 15-Oct-2013.)
= (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝑁) (𝑅𝐹)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)

Theoremcdleml1N 35282 Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓)) = (𝑅‘(𝑉𝑓)))

Theoremcdleml2N 35283* Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → ∃𝑠𝐸 (𝑠‘(𝑈𝑓)) = (𝑉𝑓))

Theoremcdleml3N 35284* Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &    0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ 𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)

Theoremcdleml4N 35285* Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &    0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑈0𝑉0 )) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)

Theoremcdleml5N 35286* Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &    0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑈0 ) → ∃𝑠𝐸 (𝑠𝑈) = 𝑉)

Theoremcdleml6 35287* Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑄 = ((oc‘𝐾)‘𝑊)    &   𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))    &   𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))    &   𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &    0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇 ∧ (𝑠𝐸𝑠0 )) → (𝑈𝐸 ∧ (𝑈‘(𝑠)) = ))

Theoremcdleml7 35288* Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑄 = ((oc‘𝐾)‘𝑊)    &   𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))    &   𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))    &   𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &    0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇 ∧ (𝑠𝐸𝑠0 )) → ((𝑈𝑠)‘) = (( I ↾ 𝑇)‘))

Theoremcdleml8 35289* Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑄 = ((oc‘𝐾)‘𝑊)    &   𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))    &   𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))    &   𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &    0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → (𝑈𝑠) = ( I ↾ 𝑇))

Theoremcdleml9 35290* Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑄 = ((oc‘𝐾)‘𝑊)    &   𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))    &   𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))    &   𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &    0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → 𝑈0 )

Theoremdva1dim 35291* Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in [Crawley] p. 120 line 21, but using a non-identity translation (nonzero vector) 𝐹 whose trace is 𝑃 rather than 𝑃 itself; 𝐹 exists by cdlemf 34869. 𝐸 is the division ring base by erngdv 35299, and 𝑠𝐹 is the scalar product by dvavsca 35323. 𝐹 must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013.)
= (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑔 ∣ ∃𝑠𝐸 𝑔 = (𝑠𝐹)} = {𝑔𝑇 ∣ (𝑅𝑔) (𝑅𝐹)})

Theoremdvhb1dimN 35292* Two expressions for the 1-dimensional subspaces of vector space H, in the isomorphism B case where the 2nd vector component is zero. (Contributed by NM, 23-Feb-2014.) (New usage is discouraged.)
= (le‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &    0 = (𝑇 ↦ ( I ↾ 𝐵))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 0 ⟩} = {𝑔 ∈ (𝑇 × 𝐸) ∣ ((𝑅‘(1st𝑔)) (𝑅𝐹) ∧ (2nd𝑔) = 0 )})

Theoremerng1lem 35293 Value of the endomorphism division ring unit. (Contributed by NM, 12-Oct-2013.)
𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &   ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r𝐷) = ( I ↾ 𝑇))

Theoremerngdvlem1 35294* Lemma for eringring 35298. (Contributed by NM, 4-Aug-2013.)
𝐻 = (LHyp‘𝐾)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &   𝐵 = (Base‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))    &    0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))    &   𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)

Theoremerngdvlem2N 35295* Lemma for eringring 35298. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &   𝐵 = (Base‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))    &    0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))    &   𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Abel)

Theoremerngdvlem3 35296* Lemma for eringring 35298. (Contributed by NM, 6-Aug-2013.)
𝐻 = (LHyp‘𝐾)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &   𝐵 = (Base‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))    &    0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))    &   𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))    &    + = (𝑎𝐸, 𝑏𝐸 ↦ (𝑎𝑏))       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)

Theoremerngdvlem4 35297* Lemma for erngdv 35299. (Contributed by NM, 11-Aug-2013.)
𝐻 = (LHyp‘𝐾)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &   𝐵 = (Base‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐸 = ((TEndo‘𝐾)‘𝑊)    &   𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))    &    0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))    &   𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))    &    + = (𝑎𝐸, 𝑏𝐸 ↦ (𝑎𝑏))    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝑅 = ((trL‘𝐾)‘𝑊)    &   𝑄 = ((oc‘𝐾)‘𝑊)    &   𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))    &   𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))    &   𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))    &   𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐷 ∈ DivRing)

Theoremeringring 35298 An endomorphism ring is a ring. TODO: fix comment. (Contributed by NM, 4-Aug-2013.)
𝐻 = (LHyp‘𝐾)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)

Theoremerngdv 35299 An endomorphism ring is a division ring. TODO: fix comment. (Contributed by NM, 11-Aug-2013.)
𝐻 = (LHyp‘𝐾)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ DivRing)

Theoremerng0g 35300* The division ring zero of an endomorphism ring. (Contributed by NM, 5-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑇 = ((LTrn‘𝐾)‘𝑊)    &   𝐷 = ((EDRing‘𝐾)‘𝑊)    &   𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))    &    0 = (0g𝐷)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = 𝑂)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
 Copyright terms: Public domain < Previous  Next >