HomeHome Metamath Proof Explorer
Theorem List (p. 255 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 25401-25500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremragflat3 25401 Right angle and colinearity. Theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝑆 = (pInvG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))    &   (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))       (𝜑 → (𝐴 = 𝐵𝐶 = 𝐵))
 
Theoremragcgr 25402 Right angle and colinearity. Theorem 8.10 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝑆 = (pInvG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &    = (cgrG‘𝐺)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)       (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
 
Theoremmotrag 25403 Right angles are preserved by motions. (Contributed by Thierry Arnoux, 16-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝑆 = (pInvG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐹 ∈ (𝐺Ismt𝐺))    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))       (𝜑 → ⟨“(𝐹𝐴)(𝐹𝐵)(𝐹𝐶)”⟩ ∈ (∟G‘𝐺))
 
Theoremragncol 25404 Right angle implies non-colinearity. A consequence of theorem 8.9 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 1-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝑆 = (pInvG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))    &   (𝜑𝐴𝐵)    &   (𝜑𝐶𝐵)       (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
 
Theoremperpln1 25405 Derive a line from perpendicularity. (Contributed by Thierry Arnoux, 27-Nov-2019.)
𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴(⟂G‘𝐺)𝐵)       (𝜑𝐴 ∈ ran 𝐿)
 
Theoremperpln2 25406 Derive a line from perpendicularity. (Contributed by Thierry Arnoux, 27-Nov-2019.)
𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴(⟂G‘𝐺)𝐵)       (𝜑𝐵 ∈ ran 𝐿)
 
Theoremisperp 25407* Property for 2 lines A, B to be perpendicular. Item (ii) of definition 8.11 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴 ∈ ran 𝐿)    &   (𝜑𝐵 ∈ ran 𝐿)       (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
 
Theoremperpcom 25408 The "perpendicular" relation commutes. Theorem 8.12 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴 ∈ ran 𝐿)    &   (𝜑𝐵 ∈ ran 𝐿)    &   (𝜑𝐴(⟂G‘𝐺)𝐵)       (𝜑𝐵(⟂G‘𝐺)𝐴)
 
Theoremperpneq 25409 Two perpendicular lines are different. Theorem 8.14 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 18-Oct-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴 ∈ ran 𝐿)    &   (𝜑𝐵 ∈ ran 𝐿)    &   (𝜑𝐴(⟂G‘𝐺)𝐵)       (𝜑𝐴𝐵)
 
Theoremisperp2 25410* Property for 2 lines A, B, intersecting at a point X to be perpendicular. Item (i) of definition 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴 ∈ ran 𝐿)    &   (𝜑𝐵 ∈ ran 𝐿)    &   (𝜑𝑋 ∈ (𝐴𝐵))       (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺)))
 
Theoremisperp2d 25411 One direction of isperp2 25410. (Contributed by Thierry Arnoux, 10-Nov-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴 ∈ ran 𝐿)    &   (𝜑𝐵 ∈ ran 𝐿)    &   (𝜑𝑋 ∈ (𝐴𝐵))    &   (𝜑𝑈𝐴)    &   (𝜑𝑉𝐵)    &   (𝜑𝐴(⟂G‘𝐺)𝐵)       (𝜑 → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
 
Theoremragperp 25412 Deduce that two lines are perpendicular from a right angle statement. One direction of theorem 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 20-Oct-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴 ∈ ran 𝐿)    &   (𝜑𝐵 ∈ ran 𝐿)    &   (𝜑𝑋 ∈ (𝐴𝐵))    &   (𝜑𝑈𝐴)    &   (𝜑𝑉𝐵)    &   (𝜑𝑈𝑋)    &   (𝜑𝑉𝑋)    &   (𝜑 → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))       (𝜑𝐴(⟂G‘𝐺)𝐵)
 
Theoremfootex 25413* Lemma for foot 25414: existence part. (Contributed by Thierry Arnoux, 19-Oct-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴 ∈ ran 𝐿)    &   (𝜑𝐶𝑃)    &   (𝜑 → ¬ 𝐶𝐴)       (𝜑 → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
 
Theoremfoot 25414* From a point 𝐶 outside of a line 𝐴, there exists a unique point 𝑥 on 𝐴 such that (𝐶𝐿𝑥) is perpendicular to 𝐴. That point is called the foot from 𝐶 on 𝐴. Theorem 8.18 of [Schwabhauser] p. 60. (Contributed by Thierry Arnoux, 19-Oct-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴 ∈ ran 𝐿)    &   (𝜑𝐶𝑃)    &   (𝜑 → ¬ 𝐶𝐴)       (𝜑 → ∃!𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
 
Theoremfootne 25415 Uniqueness of the foot point. (Contributed by Thierry Arnoux, 28-Feb-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴 ∈ ran 𝐿)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝑃)    &   (𝜑 → (𝑋𝐿𝑌)(⟂G‘𝐺)𝐴)       (𝜑 → ¬ 𝑌𝐴)
 
Theoremfooteq 25416 Uniqueness of the foot point. (Contributed by Thierry Arnoux, 1-Mar-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴 ∈ ran 𝐿)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐴)    &   (𝜑𝑍𝑃)    &   (𝜑 → (𝑋𝐿𝑍)(⟂G‘𝐺)𝐴)    &   (𝜑 → (𝑌𝐿𝑍)(⟂G‘𝐺)𝐴)       (𝜑𝑋 = 𝑌)
 
Theoremhlperpnel 25417 A point on a half-line which is perpendicular to a line cannot be on that line. (Contributed by Thierry Arnoux, 1-Mar-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴 ∈ ran 𝐿)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝑈𝐴)    &   (𝜑𝑉𝑃)    &   (𝜑𝑊𝑃)    &   (𝜑𝐴(⟂G‘𝐺)(𝑈𝐿𝑉))    &   (𝜑𝑉(𝐾𝑈)𝑊)       (𝜑 → ¬ 𝑊𝐴)
 
Theoremperprag 25418 Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 10-Nov-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶 ∈ (𝐴𝐿𝐵))    &   (𝜑𝐷𝑃)    &   (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝐷))       (𝜑 → ⟨“𝐴𝐶𝐷”⟩ ∈ (∟G‘𝐺))
 
TheoremperpdragALT 25419 Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝐷)    &   (𝜑𝐵𝐷)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷(⟂G‘𝐺)(𝐵𝐿𝐶))       (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
 
Theoremperpdrag 25420 Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝐷)    &   (𝜑𝐵𝐷)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷(⟂G‘𝐺)(𝐵𝐿𝐶))       (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
 
Theoremcolperp 25421 Deduce a perpendicularity from perpendicularity and colinearity. (Contributed by Thierry Arnoux, 8-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)𝐷)    &   (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))    &   (𝜑𝐴𝐶)       (𝜑 → (𝐴𝐿𝐶)(⟂G‘𝐺)𝐷)
 
Theoremcolperpexlem1 25422 Lemma for colperp 25421. First part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 27-Oct-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   𝑆 = (pInvG‘𝐺)    &   𝑀 = (𝑆𝐴)    &   𝑁 = (𝑆𝐵)    &   𝐾 = (𝑆𝑄)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑄𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))    &   (𝜑 → (𝐾‘(𝑀𝐶)) = (𝑁𝐶))       (𝜑 → ⟨“𝐵𝐴𝑄”⟩ ∈ (∟G‘𝐺))
 
Theoremcolperpexlem2 25423 Lemma for colperpex 25425. Second part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 10-Nov-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   𝑆 = (pInvG‘𝐺)    &   𝑀 = (𝑆𝐴)    &   𝑁 = (𝑆𝐵)    &   𝐾 = (𝑆𝑄)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑄𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))    &   (𝜑 → (𝐾‘(𝑀𝐶)) = (𝑁𝐶))    &   (𝜑𝐵𝐶)       (𝜑𝐴𝑄)
 
Theoremcolperpexlem3 25424* Lemma for colperpex 25425. Case 1 of theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑 → ¬ 𝐶 ∈ (𝐴𝐿𝐵))       (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
 
Theoremcolperpex 25425* In dimension 2 and above, on a line (𝐴𝐿𝐵) there is always a perpendicular 𝑃 from 𝐴 on a given plane (here given by 𝐶, in case 𝐶 does not lie on the line). Theorem 8.21 of [Schwabhauser] p. 63. (Contributed by Thierry Arnoux, 20-Nov-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐺DimTarskiG≥2)       (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝐶𝐼𝑝))))
 
Theoremmideulem2 25426 Lemma for opphllem 25427, which is itself used for mideu 25430. (Contributed by Thierry Arnoux, 19-Feb-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   𝑆 = (pInvG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝑄𝑃)    &   (𝜑𝑂𝑃)    &   (𝜑𝑇𝑃)    &   (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))    &   (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))    &   (𝜑𝑇 ∈ (𝐴𝐿𝐵))    &   (𝜑𝑇 ∈ (𝑄𝐼𝑂))    &   (𝜑𝑅𝑃)    &   (𝜑𝑅 ∈ (𝐵𝐼𝑄))    &   (𝜑 → (𝐴 𝑂) = (𝐵 𝑅))    &   (𝜑𝑋𝑃)    &   (𝜑𝑋 ∈ (𝑇𝐼𝐵))    &   (𝜑𝑋 ∈ (𝑅𝐼𝑂))    &   (𝜑𝑍𝑃)    &   (𝜑𝑋 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑍))    &   (𝜑 → (𝑋 𝑍) = (𝑋 𝑅))    &   (𝜑𝑀𝑃)    &   (𝜑𝑅 = ((𝑆𝑀)‘𝑍))       (𝜑𝐵 = 𝑀)
 
Theoremopphllem 25427* Lemma 8.24 of [Schwabhauser] p. 66. This is used later for mideulem 25428 and later for opphl 25446. (Contributed by Thierry Arnoux, 21-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   𝑆 = (pInvG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝑄𝑃)    &   (𝜑𝑂𝑃)    &   (𝜑𝑇𝑃)    &   (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))    &   (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))    &   (𝜑𝑇 ∈ (𝐴𝐿𝐵))    &   (𝜑𝑇 ∈ (𝑄𝐼𝑂))    &   (𝜑𝑅𝑃)    &   (𝜑𝑅 ∈ (𝐵𝐼𝑄))    &   (𝜑 → (𝐴 𝑂) = (𝐵 𝑅))       (𝜑 → ∃𝑥𝑃 (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑅)))
 
Theoremmideulem 25428* Lemma for mideu 25430. We can assume mideulem.9 "without loss of generality" (Contributed by Thierry Arnoux, 25-Nov-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   𝑆 = (pInvG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝑄𝑃)    &   (𝜑𝑂𝑃)    &   (𝜑𝑇𝑃)    &   (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))    &   (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))    &   (𝜑𝑇 ∈ (𝐴𝐿𝐵))    &   (𝜑𝑇 ∈ (𝑄𝐼𝑂))    &   (𝜑 → (𝐴 𝑂)(≤G‘𝐺)(𝐵 𝑄))       (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
 
Theoremmidex 25429* Existence of the midpoint, part Theorem 8.22 of [Schwabhauser] p. 64. Note that this proof requires a construction in 2 dimensions or more, i.e. it does not prove the existence of a midpoint in dimension 1, for a geometry restricted to a line. (Contributed by Thierry Arnoux, 25-Nov-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   𝑆 = (pInvG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐺DimTarskiG≥2)       (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
 
Theoremmideu 25430* Existence and uniqueness of the midpoint, Theorem 8.22 of [Schwabhauser] p. 64. (Contributed by Thierry Arnoux, 25-Nov-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   𝑆 = (pInvG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐺DimTarskiG≥2)       (𝜑 → ∃!𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
 
15.2.14  Half-planes
 
Theoremislnopp 25431* The property for two points 𝐴 and 𝐵 to lie on the opposite sides of a set 𝐷 Definition 9.1 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
 
Theoremislnoppd 25432* Deduce that 𝐴 and 𝐵 lie on opposite sides of line 𝐿. (Contributed by Thierry Arnoux, 16-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝐷)    &   (𝜑 → ¬ 𝐴𝐷)    &   (𝜑 → ¬ 𝐵𝐷)    &   (𝜑𝐶 ∈ (𝐴𝐼𝐵))       (𝜑𝐴𝑂𝐵)
 
Theoremoppne1 25433* Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴𝑂𝐵)       (𝜑 → ¬ 𝐴𝐷)
 
Theoremoppne2 25434* Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴𝑂𝐵)       (𝜑 → ¬ 𝐵𝐷)
 
Theoremoppne3 25435* Points lying on opposite sides of a line cannot be equal. (Contributed by Thierry Arnoux, 3-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴𝑂𝐵)       (𝜑𝐴𝐵)
 
Theoremoppcom 25436* Commutativity rule for "opposite" Theorem 9.2 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴𝑂𝐵)       (𝜑𝐵𝑂𝐴)
 
Theoremopptgdim2 25437* If two points opposite to a line exist, dimension must be 2 or more. (Contributed by Thierry Arnoux, 3-Mar-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴𝑂𝐵)       (𝜑𝐺DimTarskiG≥2)
 
Theoremoppnid 25438* The "opposite to a line" relation is irreflexive. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)       (𝜑 → ¬ 𝐴𝑂𝐴)
 
Theoremopphllem1 25439* Lemma for opphl 25446. (Contributed by Thierry Arnoux, 20-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   𝑆 = ((pInvG‘𝐺)‘𝑀)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑅𝐷)    &   (𝜑𝐴𝑂𝐶)    &   (𝜑𝑀𝐷)    &   (𝜑𝐴 = (𝑆𝐶))    &   (𝜑𝐴𝑅)    &   (𝜑𝐵𝑅)    &   (𝜑𝐵 ∈ (𝑅𝐼𝐴))       (𝜑𝐵𝑂𝐶)
 
Theoremopphllem2 25440* Lemma for opphl 25446. Lemma 9.3 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 21-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   𝑆 = ((pInvG‘𝐺)‘𝑀)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑅𝐷)    &   (𝜑𝐴𝑂𝐶)    &   (𝜑𝑀𝐷)    &   (𝜑𝐴 = (𝑆𝐶))    &   (𝜑𝐴𝑅)    &   (𝜑𝐵𝑅)    &   (𝜑 → (𝐴 ∈ (𝑅𝐼𝐵) ∨ 𝐵 ∈ (𝑅𝐼𝐴)))       (𝜑𝐵𝑂𝐶)
 
Theoremopphllem3 25441* Lemma for opphl 25446: We assume opphllem3.l "without loss of generality". (Contributed by Thierry Arnoux, 21-Feb-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   𝑁 = ((pInvG‘𝐺)‘𝑀)    &   (𝜑𝐴𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑅𝐷)    &   (𝜑𝑆𝐷)    &   (𝜑𝑀𝑃)    &   (𝜑𝐴𝑂𝐶)    &   (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))    &   (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))    &   (𝜑𝑅𝑆)    &   (𝜑 → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))    &   (𝜑𝑈𝑃)    &   (𝜑 → (𝑁𝑅) = 𝑆)       (𝜑 → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
 
Theoremopphllem4 25442* Lemma for opphl 25446. (Contributed by Thierry Arnoux, 22-Feb-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   𝑁 = ((pInvG‘𝐺)‘𝑀)    &   (𝜑𝐴𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑅𝐷)    &   (𝜑𝑆𝐷)    &   (𝜑𝑀𝑃)    &   (𝜑𝐴𝑂𝐶)    &   (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))    &   (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))    &   (𝜑𝑅𝑆)    &   (𝜑 → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))    &   (𝜑𝑈𝑃)    &   (𝜑 → (𝑁𝑅) = 𝑆)    &   (𝜑𝑉𝑃)    &   (𝜑𝑈(𝐾𝑅)𝐴)    &   (𝜑𝑉(𝐾𝑆)𝐶)       (𝜑𝑈𝑂𝑉)
 
Theoremopphllem5 25443* Second part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 2-Mar-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   𝑁 = ((pInvG‘𝐺)‘𝑀)    &   (𝜑𝐴𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑅𝐷)    &   (𝜑𝑆𝐷)    &   (𝜑𝑀𝑃)    &   (𝜑𝐴𝑂𝐶)    &   (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))    &   (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))    &   (𝜑𝑈𝑃)    &   (𝜑𝑉𝑃)    &   (𝜑𝑈(𝐾𝑅)𝐴)    &   (𝜑𝑉(𝐾𝑆)𝐶)       (𝜑𝑈𝑂𝑉)
 
Theoremopphllem6 25444* First part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 3-Mar-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   𝑁 = ((pInvG‘𝐺)‘𝑀)    &   (𝜑𝐴𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑅𝐷)    &   (𝜑𝑆𝐷)    &   (𝜑𝑀𝑃)    &   (𝜑𝐴𝑂𝐶)    &   (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))    &   (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))    &   (𝜑𝑈𝑃)    &   (𝜑 → (𝑁𝑅) = 𝑆)       (𝜑 → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
 
Theoremoppperpex 25445* Restating colperpex 25425 using the "opposite side of a line" relation. (Contributed by Thierry Arnoux, 2-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝐷)    &   (𝜑𝐶𝑃)    &   (𝜑 → ¬ 𝐶𝐷)    &   (𝜑𝐺DimTarskiG≥2)       (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
 
Theoremopphl 25446* If two points 𝐴 and 𝐶 lie on the opposite side of a line 𝐷 then any point of the half line (𝑅 𝐴) also lies opposite to 𝐶. Theorem 9.5 of [Schwabhauser] p. 69. (Contributed by Thierry Arnoux, 3-Mar-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐴𝑂𝐶)    &   (𝜑𝑅𝐷)    &   (𝜑𝐴(𝐾𝑅)𝐵)       (𝜑𝐵𝑂𝐶)
 
Theoremoutpasch 25447* Axiom of Pasch, outer form. This was proven by Gupta from other axioms and is therefore presented as Theorem 9.6 in [Schwabhauser] p. 70. (Contributed by Thierry Arnoux, 16-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑅𝑃)    &   (𝜑𝑄𝑃)    &   (𝜑𝐶 ∈ (𝐴𝐼𝑅))    &   (𝜑𝑄 ∈ (𝐵𝐼𝐶))       (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
 
Theoremhlpasch 25448* An application of the axiom of Pasch for half-lines. (Contributed by Thierry Arnoux, 15-Sep-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑋𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶(𝐾𝐵)𝐷)    &   (𝜑𝐴 ∈ (𝑋𝐼𝐶))       (𝜑 → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
 
Syntaxchpg 25449 "Belong to the same open half-plane" relation for points in a geometry.
class hpG
 
Definitiondf-hpg 25450* Define the open half plane relation for a geometry 𝐺. Definition 9.7 of [Schwabhauser] p. 71. See hpgbr 25452 to find the same formulation. (Contributed by Thierry Arnoux, 4-Mar-2020.)
hpG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]𝑐𝑝 (((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐)))}))
 
Theoremishpg 25451* Value of the half-plane relation for a given line 𝐷. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)       (𝜑 → ((hpG‘𝐺)‘𝐷) = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)})
 
Theoremhpgbr 25452* Half-planes : property for points 𝐴 and 𝐵 to belong to the same open half plane delimited by line 𝐷. Definition 9.7 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
 
Theoremhpgne1 25453* Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)       (𝜑 → ¬ 𝐴𝐷)
 
Theoremhpgne2 25454* Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)       (𝜑 → ¬ 𝐵𝐷)
 
Theoremlnopp2hpgb 25455* Theorem 9.8 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐴𝑂𝐶)       (𝜑 → (𝐵𝑂𝐶𝐴((hpG‘𝐺)‘𝐷)𝐵))
 
Theoremlnoppnhpg 25456* If two points lie on the opposite side of a line 𝐷, they are not on the same half-plane. Theorem 9.9 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴𝑂𝐵)       (𝜑 → ¬ 𝐴((hpG‘𝐺)‘𝐷)𝐵)
 
Theoremhpgerlem 25457* Lemma for the proof that the half-plane relation is an equivalence relation. Lemma 9.10 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑 → ¬ 𝐴𝐷)       (𝜑 → ∃𝑐𝑃 𝐴𝑂𝑐)
 
Theoremhpgid 25458* The half-plane relation is reflexive. Theorem 9.11 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑 → ¬ 𝐴𝐷)       (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐴)
 
Theoremhpgcom 25459* The half-plane relation commutes. Theorem 9.12 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐵𝑃)    &   (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)       (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐴)
 
Theoremhpgtr 25460* The half-plane relation is transitive. Theorem 9.13 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐵𝑃)    &   (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)    &   (𝜑𝐶𝑃)    &   (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐶)       (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐶)
 
Theoremcolopp 25461* Opposite sides of a line for colinear points. Theorem 9.18 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝐷)    &   (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))       (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)))
 
Theoremcolhp 25462* Half-plane relation for colinear points. Theorem 9.19 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝐷)    &   (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))    &   𝐾 = (hlG‘𝐺)       (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ (𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷)))
 
Theoremhphl 25463* If two points are on the same half-line with endpoint on a line, they are on the same half-plane defined by this line. (Contributed by Thierry Arnoux, 9-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝐷)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑 → ¬ 𝐵𝐷)    &   (𝜑𝐵(𝐾𝐴)𝐶)       (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐶)
 
15.2.15  Midpoints and Line Mirroring
 
Syntaxcmid 25464 Declare the constant for the midpoint operation.
class midG
 
Syntaxclmi 25465 Declare the constant for the line mirroring function.
class lInvG
 
Definitiondf-mid 25466* Define the midpoint operation. Definition 10.1 of [Schwabhauser] p. 88. See ismidb 25470, midbtwn 25471, and midcgr 25472. (Contributed by Thierry Arnoux, 9-Jun-2019.)
midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))))
 
Definitiondf-lmi 25467* Define the line mirroring function. Definition 10.3 of [Schwabhauser] p. 89. See islmib 25479. (Contributed by Thierry Arnoux, 1-Dec-2019.)
lInvG = (𝑔 ∈ V ↦ (𝑚 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑚 ∧ (𝑚(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))))
 
Theoremmidf 25468 Midpoint as a function. (Contributed by Thierry Arnoux, 1-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)       (𝜑 → (midG‘𝐺):(𝑃 × 𝑃)⟶𝑃)
 
Theoremmidcl 25469 Closure of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ 𝑃)
 
Theoremismidb 25470 Property of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   𝑆 = (pInvG‘𝐺)    &   (𝜑𝑀𝑃)       (𝜑 → (𝐵 = ((𝑆𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀))
 
Theoremmidbtwn 25471 Betweenness of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ (𝐴𝐼𝐵))
 
Theoremmidcgr 25472 Congruence of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑 → (𝐴(midG‘𝐺)𝐵) = 𝐶)       (𝜑 → (𝐶 𝐴) = (𝐶 𝐵))
 
Theoremmidid 25473 Midpoint of a null segment. (Contributed by Thierry Arnoux, 7-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → (𝐴(midG‘𝐺)𝐴) = 𝐴)
 
Theoremmidcom 25474 Commutativity rule for the midpoint. (Contributed by Thierry Arnoux, 2-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝐵(midG‘𝐺)𝐴))
 
Theoremmirmid 25475 Point inversion preserves midpoints. (Contributed by Thierry Arnoux, 12-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   𝑆 = ((pInvG‘𝐺)‘𝑀)    &   (𝜑𝑀𝑃)       (𝜑 → ((𝑆𝐴)(midG‘𝐺)(𝑆𝐵)) = (𝑆‘(𝐴(midG‘𝐺)𝐵)))
 
Theoremlmieu 25476* Uniqueness of the line mirror point. Theorem 10.2 of [Schwabhauser] p. 88. (Contributed by Thierry Arnoux, 1-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)       (𝜑 → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
 
Theoremlmif 25477 Line mirror as a function. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)       (𝜑𝑀:𝑃𝑃)
 
Theoremlmicl 25478 Closure of the line mirror. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)       (𝜑 → (𝑀𝐴) ∈ 𝑃)
 
Theoremislmib 25479 Property of the line mirror. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → (𝐵 = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))))
 
Theoremlmicom 25480 The line mirroring function is an involution. Theorem 10.4 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑 → (𝑀𝐴) = 𝐵)       (𝜑 → (𝑀𝐵) = 𝐴)
 
Theoremlmilmi 25481 Line mirroring is an involution. Theorem 10.5 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)       (𝜑 → (𝑀‘(𝑀𝐴)) = 𝐴)
 
Theoremlmireu 25482* Any point has a unique antecedent through line mirroring. Theorem 10.6 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)       (𝜑 → ∃!𝑏𝑃 (𝑀𝑏) = 𝐴)
 
Theoremlmieq 25483 Equality deduction for line mirroring. Theorem 10.7 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑 → (𝑀𝐴) = (𝑀𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremlmiinv 25484 The invariants of the line mirroring lie on the mirror line. Theorem 10.8 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)       (𝜑 → ((𝑀𝐴) = 𝐴𝐴𝐷))
 
Theoremlmicinv 25485 The mirroring line is an invariant. (Contributed by Thierry Arnoux, 8-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐴𝐷)       (𝜑 → (𝑀𝐴) = 𝐴)
 
Theoremlmimid 25486 If we have a right angle, then the mirror point is the point inversion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   𝑆 = ((pInvG‘𝐺)‘𝐵)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))    &   (𝜑𝐴𝐷)    &   (𝜑𝐵𝐷)    &   (𝜑𝐶𝑃)    &   (𝜑𝐴𝐵)       (𝜑 → (𝑀𝐶) = (𝑆𝐶))
 
Theoremlmif1o 25487 The line mirroring function 𝑀 is a bijection. Theorem 10.9 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)       (𝜑𝑀:𝑃1-1-onto𝑃)
 
Theoremlmiisolem 25488 Lemma for lmiiso 25489. (Contributed by Thierry Arnoux, 14-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   𝑆 = ((pInvG‘𝐺)‘𝑍)    &   𝑍 = ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵)))       (𝜑 → ((𝑀𝐴) (𝑀𝐵)) = (𝐴 𝐵))
 
Theoremlmiiso 25489 The line mirroring function is an isometry, i.e. it is conserves congruence. Because it is also a bijection, it is also a motion. Theorem 10.10 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → ((𝑀𝐴) (𝑀𝐵)) = (𝐴 𝐵))
 
Theoremlmimot 25490 Line mirroring is a motion of the geometric space. Theorem 10.11 of [Schwabhauser] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)       (𝜑𝑀 ∈ (𝐺Ismt𝐺))
 
Theoremhypcgrlem1 25491 Lemma for hypcgr 25493, case where triangles share a cathetus. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))    &   (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))    &   (𝜑𝐵 = 𝐸)    &   𝑆 = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))    &   (𝜑𝐶 = 𝐹)       (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
 
Theoremhypcgrlem2 25492 Lemma for hypcgr 25493, case where triangles share one vertex 𝐵. (Contributed by Thierry Arnoux, 16-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))    &   (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))    &   (𝜑𝐵 = 𝐸)    &   𝑆 = ((lInvG‘𝐺)‘((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))       (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
 
Theoremhypcgr 25493 If the catheti of two right-angled triangles are congruent, so is their hypothenuse. Theorem 10.12 of [Schwabhauser] p. 91. (Contributed by Thierry Arnoux, 16-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))    &   (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))       (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
 
Theoremlmiopp 25494* Line mirroring produces points on the opposite side of the mirroring line. Theorem 10.14 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐷 ∈ ran 𝐿)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   (𝜑𝐴𝑃)    &   (𝜑 → ¬ 𝐴𝐷)       (𝜑𝐴𝑂(𝑀𝐴))
 
Theoremlnperpex 25495* Existence of a perpendicular to a line 𝐿 at a given point 𝐴. Theorem 10.15 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐷 ∈ ran 𝐿)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐴𝐷)    &   (𝜑𝑄𝑃)    &   (𝜑 → ¬ 𝑄𝐷)       (𝜑 → ∃𝑝𝑃 (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
 
Theoremtrgcopy 25496* Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: existence part. First part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 4-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))    &   (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))       (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
 
Theoremtrgcopyeulem 25497* Lemma for trgcopyeu 25498. (Contributed by Thierry Arnoux, 8-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))    &   (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑋”⟩)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑌”⟩)    &   (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)    &   (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)       (𝜑𝑋 = 𝑌)
 
Theoremtrgcopyeu 25498* Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: uniqueness part. Second part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 8-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))    &   (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))       (𝜑 → ∃!𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
 
15.2.16  Congruence of angles
 
Syntaxccgra 25499 Declare the constant for the congruence between angles relation.
class cgrA
 
Definitiondf-cgra 25500* Define the congruence relation bewteen angles. As for triangles we use "words of points". See iscgra 25501 for a more human readable version. (Contributed by Thierry Arnoux, 30-Jul-2020.)
cgrA = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑝𝑚 (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))})
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >