HomeHome Metamath Proof Explorer
Theorem List (p. 418 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 41701-41800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremc0ghm 41701* The constant mapping to zero is a group homomorphism. (Contributed by AV, 16-Apr-2020.)
𝐵 = (Base‘𝑆)    &    0 = (0g𝑇)    &   𝐻 = (𝑥𝐵0 )       ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
 
Theoremc0rhm 41702* The constant mapping to zero is a ring homomorphism from any ring to the zero ring. (Contributed by AV, 17-Apr-2020.)
𝐵 = (Base‘𝑆)    &    0 = (0g𝑇)    &   𝐻 = (𝑥𝐵0 )       ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RingHom 𝑇))
 
Theoremc0rnghm 41703* The constant mapping to zero is a nonunital ring homomorphism from any nonunital ring to the zero ring. (Contributed by AV, 17-Apr-2020.)
𝐵 = (Base‘𝑆)    &    0 = (0g𝑇)    &   𝐻 = (𝑥𝐵0 )       ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHomo 𝑇))
 
Theoremc0snmgmhm 41704* The constant mapping to zero is a magma homomorphism from a magma with one element to any monoid. (Contributed by AV, 17-Apr-2020.)
𝐵 = (Base‘𝑇)    &    0 = (0g𝑆)    &   𝐻 = (𝑥𝐵0 )       ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (#‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
 
Theoremc0snmhm 41705* The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020.)
𝐵 = (Base‘𝑇)    &    0 = (0g𝑆)    &   𝐻 = (𝑥𝐵0 )    &   𝑍 = (0g𝑇)       ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆))
 
Theoremc0snghm 41706* The constant mapping to zero is a group homomorphism from the trivial group (consisting of the zero only) to any group. (Contributed by AV, 17-Apr-2020.)
𝐵 = (Base‘𝑇)    &    0 = (0g𝑆)    &   𝐻 = (𝑥𝐵0 )    &   𝑍 = (0g𝑇)       ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 GrpHom 𝑆))
 
Theoremzrrnghm 41707* The constant mapping to zero is a nonunital ring homomorphism from the zero ring to any nonunital ring. (Contributed by AV, 17-Apr-2020.)
𝐵 = (Base‘𝑇)    &    0 = (0g𝑆)    &   𝐻 = (𝑥𝐵0 )       ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑇 RngHomo 𝑆))
 
21.34.12.4  Ring homomorphisms (extension)
 
Theoremrhmfn 41708 The mapping of two rings to the ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020.)
RingHom Fn (Ring × Ring)
 
Theoremrhmval 41709 The ring homomorphisms between two rings. (Contributed by AV, 1-Mar-2020.)
((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝑅 RingHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))
 
Theoremrhmisrnghm 41710 Each unital ring homomorphism is a non-unital ring homomorphism. (Contributed by AV, 29-Feb-2020.)
(𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 RngHomo 𝑆))
 
21.34.12.5  Ideals as non-unital rings
 
Theoremlidldomn1 41711* If a (left) ideal (which is not the zero ideal) of a domain has a multiplicative identity element, the identity element is the identity of the domain. (Contributed by AV, 17-Feb-2020.)
𝐿 = (LIdeal‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 }) ∧ 𝐼𝑈) → (∀𝑥𝑈 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥) → 𝐼 = 1 ))
 
Theoremlidlssbas 41712 The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)       (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
 
Theoremlidlbas 41713 A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)       (𝑈𝐿 → (Base‘𝐼) = 𝑈)
 
Theoremlidlabl 41714 A (left) ideal of a ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)       ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝐼 ∈ Abel)
 
Theoremlidlmmgm 41715 The multiplicative group of a (left) ideal of a ring is a magma. (Contributed by AV, 17-Feb-2020.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)       ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ Mgm)
 
Theoremlidlmsgrp 41716 The multiplicative group of a (left) ideal of a ring is a semigroup. (Contributed by AV, 17-Feb-2020.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)       ((𝑅 ∈ Ring ∧ 𝑈𝐿) → (mulGrp‘𝐼) ∈ SGrp)
 
Theoremlidlrng 41717 A (left) ideal of a ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)       ((𝑅 ∈ Ring ∧ 𝑈𝐿) → 𝐼 ∈ Rng)
 
Theoremzlidlring 41718 The zero (left) ideal of a non-unital ring is a unital ring (the zero ring). (Contributed by AV, 16-Feb-2020.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑈 = { 0 }) → 𝐼 ∈ Ring)
 
Theoremuzlidlring 41719 Only the zero (left) ideal or the unit (left) ideal of a domain is a unital ring. (Contributed by AV, 18-Feb-2020.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Domn ∧ 𝑈𝐿) → (𝐼 ∈ Ring ↔ (𝑈 = { 0 } ∨ 𝑈 = 𝐵)))
 
Theoremlidldomnnring 41720 A (left) ideal of a domain which is neither the zero ideal nor the unit ideal is not a unital ring. (Contributed by AV, 18-Feb-2020.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Domn ∧ (𝑈𝐿𝑈 ≠ { 0 } ∧ 𝑈𝐵)) → 𝐼 ∉ Ring)
 
21.34.12.6  The non-unital ring of even integers
 
Theorem0even 41721* 0 is an even integer. (Contributed by AV, 11-Feb-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}       0 ∈ 𝐸
 
Theorem1neven 41722* 1 is not an even integer. (Contributed by AV, 12-Feb-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}       1 ∉ 𝐸
 
Theorem2even 41723* 2 is an even integer. (Contributed by AV, 12-Feb-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}       2 ∈ 𝐸
 
Theorem2zlidl 41724* The even integers are a (left) ideal of the ring of integers. (Contributed by AV, 20-Feb-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑈 = (LIdeal‘ℤring)       𝐸𝑈
 
Theorem2zrng 41725* The ring of integers restricted to the even integers is a (non-unital) ring, the "ring of even integers". Remark: the structure of the complementary subset of the set of integers, the odd integers, is not even a magma, see oddinmgm 41605. (Contributed by AV, 20-Feb-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑈 = (LIdeal‘ℤring)    &   𝑅 = (ℤrings 𝐸)       𝑅 ∈ Rng
 
Theorem2zrngbas 41726* The base set of R is the set of all even integers. (Contributed by AV, 31-Jan-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)       𝐸 = (Base‘𝑅)
 
Theorem2zrngadd 41727* The group addition operation of R is the addition of complex numbers. (Contributed by AV, 31-Jan-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)        + = (+g𝑅)
 
Theorem2zrng0 41728* The additive identity of R is the complex number 0. (Contributed by AV, 11-Feb-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)       0 = (0g𝑅)
 
Theorem2zrngamgm 41729* R is an (additive) magma. (Contributed by AV, 6-Jan-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)       𝑅 ∈ Mgm
 
Theorem2zrngasgrp 41730* R is an (additive) semigroup. (Contributed by AV, 4-Feb-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)       𝑅 ∈ SGrp
 
Theorem2zrngamnd 41731* R is an (additive) monoid. (Contributed by AV, 11-Feb-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)       𝑅 ∈ Mnd
 
Theorem2zrngacmnd 41732* R is a commutative (additive) monoid. (Contributed by AV, 11-Feb-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)       𝑅 ∈ CMnd
 
Theorem2zrngagrp 41733* R is an (additive) group. (Contributed by AV, 6-Jan-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)       𝑅 ∈ Grp
 
Theorem2zrngaabl 41734* R is an (additive) abelian group. (Contributed by AV, 11-Feb-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)       𝑅 ∈ Abel
 
Theorem2zrngmul 41735* The ring multiplication operation of R is the multiplication on complex numbers. (Contributed by AV, 31-Jan-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)        · = (.r𝑅)
 
Theorem2zrngmmgm 41736* R is a (multiplicative) magma. (Contributed by AV, 11-Feb-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)    &   𝑀 = (mulGrp‘𝑅)       𝑀 ∈ Mgm
 
Theorem2zrngmsgrp 41737* R is a (multiplicative) semigroup. (Contributed by AV, 4-Feb-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)    &   𝑀 = (mulGrp‘𝑅)       𝑀 ∈ SGrp
 
Theorem2zrngALT 41738* The ring of integers restricted to the even integers is a (non-unital) ring, the "ring of even integers". Alternate version of 2zrng 41725, based on a restriction of the field of the complex numbers. The proof is based on the facts that the ring of even integers is an additive abelian group (see 2zrngaabl 41734) and a multiplicative semigroup (see 2zrngmsgrp 41737). (Contributed by AV, 11-Feb-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)    &   𝑀 = (mulGrp‘𝑅)       𝑅 ∈ Rng
 
Theorem2zrngnmlid 41739* R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)    &   𝑀 = (mulGrp‘𝑅)       𝑏𝐸𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎
 
Theorem2zrngnmrid 41740* R has no multiplicative (right) identity. (Contributed by AV, 12-Feb-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)    &   𝑀 = (mulGrp‘𝑅)       𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑎 · 𝑏) ≠ 𝑎
 
Theorem2zrngnmlid2 41741* R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)    &   𝑀 = (mulGrp‘𝑅)       𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑏 · 𝑎) ≠ 𝑎
 
Theorem2zrngnring 41742* R is not a unital ring. (Contributed by AV, 6-Jan-2020.)
𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}    &   𝑅 = (ℂflds 𝐸)    &   𝑀 = (mulGrp‘𝑅)       𝑅 ∉ Ring
 
21.34.12.7  A constructed not unital ring
 
Theoremplusgndxnmulrndx 41743 The slot for the group (addition) operation is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
(+g‘ndx) ≠ (.r‘ndx)
 
Theorembasendxnmulrndx 41744 The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.)
(Base‘ndx) ≠ (.r‘ndx)
 
Theoremcznrnglem 41745 Lemma for cznrng 41747: The base set of the ring constructed from a ℤ/n structure by replacing the (multiplicative) ring operation by a constant operation is the base set of the ℤ/n structure. (Contributed by AV, 16-Feb-2020.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐵 = (Base‘𝑌)    &   𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)       𝐵 = (Base‘𝑋)
 
Theoremcznabel 41746 The ring constructed from a ℤ/n structure by replacing the (multiplicative) ring operation by a constant operation is an abelian group. (Contributed by AV, 16-Feb-2020.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐵 = (Base‘𝑌)    &   𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)       ((𝑁 ∈ ℕ ∧ 𝐶𝐵) → 𝑋 ∈ Abel)
 
Theoremcznrng 41747* The ring constructed from a ℤ/n structure by replacing the (multiplicative) ring operation by a constant operation is a non-unital ring. (Contributed by AV, 17-Feb-2020.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐵 = (Base‘𝑌)    &   𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)    &    0 = (0g𝑌)       ((𝑁 ∈ ℕ ∧ 𝐶 = 0 ) → 𝑋 ∈ Rng)
 
Theoremcznnring 41748* The ring constructed from a ℤ/n structure with 1 < 𝑛 by replacing the (multiplicative) ring operation by a constant operation is not a unital ring. (Contributed by AV, 17-Feb-2020.)
𝑌 = (ℤ/nℤ‘𝑁)    &   𝐵 = (Base‘𝑌)    &   𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)    &    0 = (0g𝑌)       ((𝑁 ∈ (ℤ‘2) ∧ 𝐶𝐵) → 𝑋 ∉ Ring)
 
21.34.12.8  The category of non-unital rings

The "category of non-unital rings" RngCat is the category of all non-unital rings Rng in a universe and non-unital ring homomorphisms RngHomo between these rings. This category is defined as "category restriction" of the category of extensible structures ExtStrCat, which restricts the objects to non-unital rings and the morphisms to the non-unital ring homomorphisms, while the composition of morphisms is preserved, see df-rngc 41751. Alternatively, the category of non-unital rings could have been defined as extensible structure consisting of three components/slots for the objects, morphisms and composition, see df-rngcALTV 41752 or dfrngc2 41764.

Since we consider only "small categories" (i.e. categories whose objects and morphisms are actually sets and not proper classes), the objects of the category (i.e. the base set of the category regarded as extensible structure) are a subset of the non-unital rings (relativized to a subset or "universe" 𝑢) (𝑢 ∩ Rng), see rngcbas 41757, and the morphisms/arrows are the non-unital ring homomorphisms restricted to this subset of the non-unital rings ( RngHomo ↾ (𝐵 × 𝐵)), see rngchomfval 41758, whereas the composition is the ordinary composition of functions, see rngccofval 41762 and rngcco 41763.

By showing that the non-unital ring homomorphisms between non-unital rings are a subcategory subset (cat) of the mappings between base sets of extensible structures, see rnghmsscmap 41766, it can be shown that the non-unital ring homomorphisms between non-unital rings are a subcategory (Subcat) of the category of extensible structures, see rnghmsubcsetc 41769. It follows that the category of non-unital rings RngCat is actually a category, see rngccat 41770 with the identity function as identity arrow, see rngcid 41771.

 
Syntaxcrngc 41749 Extend class notation to include the category Rng.
class RngCat
 
SyntaxcrngcALTV 41750 Extend class notation to include the category Rng. (New usage is discouraged.)
class RngCatALTV
 
Definitiondf-rngc 41751 Definition of the category Rng, relativized to a subset 𝑢. This is the category of all non-unital rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.)
RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))))
 
Definitiondf-rngcALTV 41752* Definition of the category Rng, relativized to a subset 𝑢. This is the category of all non-unital rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
RngCatALTV = (𝑢 ∈ V ↦ (𝑢 ∩ Rng) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHomo 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)))⟩})
 
TheoremrngcvalALTV 41753* Value of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
𝐶 = (RngCatALTV‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐵 = (𝑈 ∩ Rng))    &   (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHomo 𝑦)))    &   (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))))       (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
 
Theoremrngcval 41754 Value of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.)
𝐶 = (RngCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐵 = (𝑈 ∩ Rng))    &   (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))       (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))
 
Theoremrnghmresfn 41755 The class of non-unital ring homomorphisms restricted to subsets of non-unital rings is a function. (Contributed by AV, 4-Mar-2020.)
(𝜑𝐵 = (𝑈 ∩ Rng))    &   (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))       (𝜑𝐻 Fn (𝐵 × 𝐵))
 
Theoremrnghmresel 41756 An element of the non-unital ring homomorphisms restricted to a subset of non-unital rings is a non-unital ring homomorphisms. (Contributed by AV, 9-Mar-2020.)
(𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))       ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RngHomo 𝑌))
 
Theoremrngcbas 41757 Set of objects of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.)
𝐶 = (RngCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)       (𝜑𝐵 = (𝑈 ∩ Rng))
 
Theoremrngchomfval 41758 Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.)
𝐶 = (RngCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)       (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
 
Theoremrngchom 41759 Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.)
𝐶 = (RngCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝐻𝑌) = (𝑋 RngHomo 𝑌))
 
Theoremelrngchom 41760 A morphism of non-unital rings is a function. (Contributed by AV, 27-Feb-2020.)
𝐶 = (RngCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)))
 
Theoremrngchomfeqhom 41761 The functionalized Hom-set operation equals the Hom-set operation in the category of non-unital rings (in a universe). (Contributed by AV, 9-Mar-2020.)
𝐶 = (RngCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)       (𝜑 → (Homf𝐶) = (Hom ‘𝐶))
 
Theoremrngccofval 41762 Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.)
𝐶 = (RngCat‘𝑈)    &   (𝜑𝑈𝑉)    &    · = (comp‘𝐶)       (𝜑· = (comp‘(ExtStrCat‘𝑈)))
 
Theoremrngcco 41763 Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.)
𝐶 = (RngCat‘𝑈)    &   (𝜑𝑈𝑉)    &    · = (comp‘𝐶)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑈)    &   (𝜑𝑍𝑈)    &   (𝜑𝐹:(Base‘𝑋)⟶(Base‘𝑌))    &   (𝜑𝐺:(Base‘𝑌)⟶(Base‘𝑍))       (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
 
Theoremdfrngc2 41764 Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020.)
𝐶 = (RngCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐵 = (𝑈 ∩ Rng))    &   (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))    &   (𝜑· = (comp‘(ExtStrCat‘𝑈)))       (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
 
Theoremrnghmsscmap2 41765* The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of non-unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.)
(𝜑𝑈𝑉)    &   (𝜑𝑅 = (Rng ∩ 𝑈))       (𝜑 → ( RngHomo ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))
 
Theoremrnghmsscmap 41766* The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020.)
(𝜑𝑈𝑉)    &   (𝜑𝑅 = (Rng ∩ 𝑈))       (𝜑 → ( RngHomo ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))
 
Theoremrnghmsubcsetclem1 41767 Lemma 1 for rnghmsubcsetc 41769. (Contributed by AV, 9-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐵 = (Rng ∩ 𝑈))    &   (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))       ((𝜑𝑥𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥))
 
Theoremrnghmsubcsetclem2 41768* Lemma 2 for rnghmsubcsetc 41769. (Contributed by AV, 9-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐵 = (Rng ∩ 𝑈))    &   (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))       ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
 
Theoremrnghmsubcsetc 41769 The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.)
𝐶 = (ExtStrCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐵 = (Rng ∩ 𝑈))    &   (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))       (𝜑𝐻 ∈ (Subcat‘𝐶))
 
Theoremrngccat 41770 The category of non-unital rings is a category. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 9-Mar-2020.)
𝐶 = (RngCat‘𝑈)       (𝑈𝑉𝐶 ∈ Cat)
 
Theoremrngcid 41771 The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 10-Mar-2020.)
𝐶 = (RngCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &    1 = (Id‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   𝑆 = (Base‘𝑋)       (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))
 
Theoremrngcsect 41772 A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020.)
𝐶 = (RngCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐸 = (Base‘𝑋)    &   𝑆 = (Sect‘𝐶)       (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
 
Theoremrngcinv 41773 An inverse in the category of non-unital rings is the converse operation. (Contributed by AV, 28-Feb-2020.)
𝐶 = (RngCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑁 = (Inv‘𝐶)       (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)))
 
Theoremrngciso 41774 An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020.)
𝐶 = (RngCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐼 = (Iso‘𝐶)       (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RngIsom 𝑌)))
 
TheoremrngcbasALTV 41775 Set of objects of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
𝐶 = (RngCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)       (𝜑𝐵 = (𝑈 ∩ Rng))
 
TheoremrngchomfvalALTV 41776* Set of arrows of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
𝐶 = (RngCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)       (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHomo 𝑦)))
 
TheoremrngchomALTV 41777 Set of arrows of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
𝐶 = (RngCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋𝐻𝑌) = (𝑋 RngHomo 𝑌))
 
TheoremelrngchomALTV 41778 A morphism of non-unital rings is a function. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
𝐶 = (RngCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌)))
 
TheoremrngccofvalALTV 41779* Composition in the category of non-unital rings. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
𝐶 = (RngCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &    · = (comp‘𝐶)       (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))))
 
TheoremrngccoALTV 41780 Composition in the category of non-unital rings. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
𝐶 = (RngCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &    · = (comp‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐹 ∈ (𝑋 RngHomo 𝑌))    &   (𝜑𝐺 ∈ (𝑌 RngHomo 𝑍))       (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
 
TheoremrngccatidALTV 41781* Lemma for rngccatALTV 41782. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
𝐶 = (RngCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)       (𝑈𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥𝐵 ↦ ( I ↾ (Base‘𝑥)))))
 
TheoremrngccatALTV 41782 The category of non-unital rings is a category. (Contributed by AV, 27-Feb-2020.) (New usage is discouraged.)
𝐶 = (RngCatALTV‘𝑈)       (𝑈𝑉𝐶 ∈ Cat)
 
TheoremrngcidALTV 41783 The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020.) (New usage is discouraged.)
𝐶 = (RngCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &    1 = (Id‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   𝑆 = (Base‘𝑋)       (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))
 
TheoremrngcsectALTV 41784 A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020.) (New usage is discouraged.)
𝐶 = (RngCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐸 = (Base‘𝑋)    &   𝑆 = (Sect‘𝐶)       (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
 
TheoremrngcinvALTV 41785 An inverse in the category of non-unital rings is the converse operation. (Contributed by AV, 28-Feb-2020.) (New usage is discouraged.)
𝐶 = (RngCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑁 = (Inv‘𝐶)       (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngIsom 𝑌) ∧ 𝐺 = 𝐹)))
 
TheoremrngcisoALTV 41786 An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020.) (New usage is discouraged.)
𝐶 = (RngCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐼 = (Iso‘𝐶)       (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋 RngIsom 𝑌)))
 
TheoremrngchomffvalALTV 41787* The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) in maps-to notation for an operation. (Contributed by AV, 1-Mar-2020.) (New usage is discouraged.)
𝐶 = (RngCatALTV‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   𝐹 = (Homf𝐶)       (𝜑𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RngHomo 𝑦)))
 
TheoremrngchomrnghmresALTV 41788 The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) as restriction of the non-unital ring homomorphisms. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
𝐶 = (RngCatALTV‘𝑈)    &   𝐵 = (Rng ∩ 𝑈)    &   (𝜑𝑈𝑉)    &   𝐹 = (Homf𝐶)       (𝜑𝐹 = ( RngHomo ↾ (𝐵 × 𝐵)))
 
Theoremrngcifuestrc 41789* The "inclusion functor" from the category of non-unital rings into the category of extensible structures. (Contributed by AV, 30-Mar-2020.)
𝑅 = (RngCat‘𝑈)    &   𝐸 = (ExtStrCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   (𝜑𝑈𝑉)    &   (𝜑𝐹 = ( I ↾ 𝐵))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))))       (𝜑𝐹(𝑅 Func 𝐸)𝐺)
 
Theoremfuncrngcsetc 41790* The "natural forgetful functor" from the category of non-unital rings into the category of sets which sends each non-unital ring to its underlying set (base set) and the morphisms (non-unital ring homomorphisms) to mappings of the corresponding base sets. An alternate proof is provided in funcrngcsetcALT 41791, using cofuval2 16370 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc 41789, and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc 16612. (Contributed by AV, 26-Mar-2020.)
𝑅 = (RngCat‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))))       (𝜑𝐹(𝑅 Func 𝑆)𝐺)
 
TheoremfuncrngcsetcALT 41791* Alternate proof of funcrngcsetc 41790, using cofuval2 16370 to construct the "natural forgetful functor" from the category of non-unital rings into the category of sets by composing the "inclusion functor" from the category of non-unital rings into the category of extensible structures, see rngcifuestrc 41789, and the "natural forgetful functor" from the category of extensible structures into the category of sets, see funcestrcsetc 16612. Surprisingly, this proof is longer than the direct proof given in funcrngcsetc 41790. (Contributed by AV, 30-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑅 = (RngCat‘𝑈)    &   𝑆 = (SetCat‘𝑈)    &   𝐵 = (Base‘𝑅)    &   (𝜑𝑈 ∈ WUni)    &   (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RngHomo 𝑦))))       (𝜑𝐹(𝑅 Func 𝑆)𝐺)
 
Theoremzrinitorngc 41792 The zero ring is an initial object in the category of nonunital rings. (Contributed by AV, 18-Apr-2020.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCat‘𝑈)    &   (𝜑𝑍 ∈ (Ring ∖ NzRing))    &   (𝜑𝑍𝑈)       (𝜑𝑍 ∈ (InitO‘𝐶))
 
Theoremzrtermorngc 41793 The zero ring is a terminal object in the category of nonunital rings. (Contributed by AV, 17-Apr-2020.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCat‘𝑈)    &   (𝜑𝑍 ∈ (Ring ∖ NzRing))    &   (𝜑𝑍𝑈)       (𝜑𝑍 ∈ (TermO‘𝐶))
 
Theoremzrzeroorngc 41794 The zero ring is a zero object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020.)
(𝜑𝑈𝑉)    &   𝐶 = (RngCat‘𝑈)    &   (𝜑𝑍 ∈ (Ring ∖ NzRing))    &   (𝜑𝑍𝑈)       (𝜑𝑍 ∈ (ZeroO‘𝐶))
 
21.34.12.9  The category of (unital) rings

The "category of unital rings" RingCat is the category of all (unital) rings Ring in a universe and (unital) ring homomorphisms RingHom between these rings. This category is defined as "category restriction" of the category of extensible structures ExtStrCat, which restricts the objects to (unital) rings and the morphisms to the (unital) ring homomorphisms, while the composition of morphisms is preserved, see df-ringc 41797. Alternatively, the category of unital rings could have been defined as extensible structure consisting of three components/slots for the objects, morphisms and composition, see dfringc2 41810. In the following, we omit the predicate "unital", so that "ring" and "ring homomorphism" (without predicate) always mean "unital ring" and "unital ring homomorphism".

Since we consider only "small categories" (i.e. categories whose objects and morphisms are actually sets and not proper classes), the objects of the category (i.e. the base set of the category regarded as extensible structure) are a subset of the rings (relativized to a subset or "universe"𝑢) (𝑢 ∩ Ring), see ringcbas 41803, and the morphisms/arrows are the ring homomorphisms restricted to this subset of the rings ( RingHom ↾ (𝐵 × 𝐵)), see ringchomfval 41804, whereas the composition is the ordinary composition of functions, see ringccofval 41808 and ringcco 41809.

By showing that the ring homomorphisms between rings are a subcategory subset (cat) of the mappings between base sets of extensible structures, see rhmsscmap 41812, it can be shown that the ring homomorphisms between rings are a subcategory (Subcat) of the category of extensible structures, see rhmsubcsetc 41815. It follows that the category of rings RingCat is actually a category, see ringccat 41816 with the identity function as identity arrow, see ringcid 41817.

Furthermore, it is shown that the ring homomorphisms between rings are a subcategory subset of the non-unital ring homomorphisms between non-unital rings, see rhmsscrnghm 41818, and that the ring homomorphisms between rings are a subcategory of the category of non-unital rings, see rhmsubcrngc 41821. By this, the restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings, see rngcresringcat 41822: ((RngCat‘𝑈) ↾cat ( RingHom ↾ (𝐵 × 𝐵))) = (RingCat‘𝑈)).

Finally, it is shown that the "natural forgetful functor" from the category of rings into the category of sets is the function which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets, see funcringcsetc 41827.

 
Syntaxcringc 41795 Extend class notation to include the category Ring.
class RingCat
 
SyntaxcringcALTV 41796 Extend class notation to include the category Ring. (New usage is discouraged.)
class RingCatALTV
 
Definitiondf-ringc 41797 Definition of the category Ring, relativized to a subset 𝑢. See also the note in [Lang] p. 91, and the item Rng in [Adamek] p. 478. This is the category of all unital rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.)
RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))))
 
Definitiondf-ringcALTV 41798* Definition of the category Ring, relativized to a subset 𝑢. This is the category of all rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by AV, 13-Feb-2020.) (New usage is discouraged.)
RingCatALTV = (𝑢 ∈ V ↦ (𝑢 ∩ Ring) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RingHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RingHom 𝑧), 𝑓 ∈ ((1st𝑣) RingHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩})
 
TheoremringcvalALTV 41799* Value of the category of rings (in a universe). (Contributed by AV, 13-Feb-2020.) (New usage is discouraged.)
𝐶 = (RingCatALTV‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐵 = (𝑈 ∩ Ring))    &   (𝜑𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 RingHom 𝑦)))    &   (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RingHom 𝑧), 𝑓 ∈ ((1st𝑣) RingHom (2nd𝑣)) ↦ (𝑔𝑓))))       (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
 
Theoremringcval 41800 Value of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.)
𝐶 = (RingCat‘𝑈)    &   (𝜑𝑈𝑉)    &   (𝜑𝐵 = (𝑈 ∩ Ring))    &   (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))       (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >