Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cznabel Structured version   Visualization version   GIF version

Theorem cznabel 41746
Description: The ring constructed from a ℤ/n structure by replacing the (multiplicative) ring operation by a constant operation is an abelian group. (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
cznrng.y 𝑌 = (ℤ/nℤ‘𝑁)
cznrng.b 𝐵 = (Base‘𝑌)
cznrng.x 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
Assertion
Ref Expression
cznabel ((𝑁 ∈ ℕ ∧ 𝐶𝐵) → 𝑋 ∈ Abel)

Proof of Theorem cznabel
StepHypRef Expression
1 nnnn0 11176 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
21adantr 480 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐶𝐵) → 𝑁 ∈ ℕ0)
3 cznrng.y . . . . 5 𝑌 = (ℤ/nℤ‘𝑁)
43zncrng 19712 . . . 4 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
52, 4syl 17 . . 3 ((𝑁 ∈ ℕ ∧ 𝐶𝐵) → 𝑌 ∈ CRing)
6 crngring 18381 . . 3 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
7 ringabl 18403 . . 3 (𝑌 ∈ Ring → 𝑌 ∈ Abel)
85, 6, 73syl 18 . 2 ((𝑁 ∈ ℕ ∧ 𝐶𝐵) → 𝑌 ∈ Abel)
9 cznrng.x . . . . 5 𝑋 = (𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩)
109fveq2i 6106 . . . 4 (Base‘𝑋) = (Base‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
11 baseid 15747 . . . . 5 Base = Slot (Base‘ndx)
12 basendxnmulrndx 41744 . . . . 5 (Base‘ndx) ≠ (.r‘ndx)
1311, 12setsnid 15743 . . . 4 (Base‘𝑌) = (Base‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
1410, 13eqtr4i 2635 . . 3 (Base‘𝑋) = (Base‘𝑌)
159fveq2i 6106 . . . 4 (+g𝑋) = (+g‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
16 plusgid 15804 . . . . 5 +g = Slot (+g‘ndx)
17 plusgndxnmulrndx 41743 . . . . 5 (+g‘ndx) ≠ (.r‘ndx)
1816, 17setsnid 15743 . . . 4 (+g𝑌) = (+g‘(𝑌 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵𝐶)⟩))
1915, 18eqtr4i 2635 . . 3 (+g𝑋) = (+g𝑌)
2014, 19ablprop 18027 . 2 (𝑋 ∈ Abel ↔ 𝑌 ∈ Abel)
218, 20sylibr 223 1 ((𝑁 ∈ ℕ ∧ 𝐶𝐵) → 𝑋 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cop 4131  cfv 5804  (class class class)co 6549  cmpt2 6551  cn 10897  0cn0 11169  ndxcnx 15692   sSet csts 15693  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Abelcabl 18017  Ringcrg 18370  CRingccrg 18371  ℤ/nczn 19670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-nsg 17415  df-eqg 17416  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053  df-cnfld 19568  df-zring 19638  df-zn 19674
This theorem is referenced by:  cznrng  41747
  Copyright terms: Public domain W3C validator