Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ress | Structured version Visualization version GIF version |
Description: Define a multifunction
restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range
(like Ring), defining a function using the base
set and applying
that (like TopGrp), or explicitly truncating the
slot before use
(like MetSp).
(Credit for this operator goes to Mario Carneiro). See ressbas 15757 for the altered base set, and resslem 15760 (subrg0 18610, ressplusg 15818, subrg1 18613, ressmulr 15829) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
df-ress | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cress 15696 | . 2 class ↾s | |
2 | vw | . . 3 setvar 𝑤 | |
3 | vx | . . 3 setvar 𝑥 | |
4 | cvv 3173 | . . 3 class V | |
5 | 2 | cv 1474 | . . . . . 6 class 𝑤 |
6 | cbs 15695 | . . . . . 6 class Base | |
7 | 5, 6 | cfv 5804 | . . . . 5 class (Base‘𝑤) |
8 | 3 | cv 1474 | . . . . 5 class 𝑥 |
9 | 7, 8 | wss 3540 | . . . 4 wff (Base‘𝑤) ⊆ 𝑥 |
10 | cnx 15692 | . . . . . . 7 class ndx | |
11 | 10, 6 | cfv 5804 | . . . . . 6 class (Base‘ndx) |
12 | 8, 7 | cin 3539 | . . . . . 6 class (𝑥 ∩ (Base‘𝑤)) |
13 | 11, 12 | cop 4131 | . . . . 5 class 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉 |
14 | csts 15693 | . . . . 5 class sSet | |
15 | 5, 13, 14 | co 6549 | . . . 4 class (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉) |
16 | 9, 5, 15 | cif 4036 | . . 3 class if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) |
17 | 2, 3, 4, 4, 16 | cmpt2 6551 | . 2 class (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
18 | 1, 17 | wceq 1475 | 1 wff ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
Colors of variables: wff setvar class |
This definition is referenced by: reldmress 15753 ressval 15754 |
Copyright terms: Public domain | W3C validator |