Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brstruct | Structured version Visualization version GIF version |
Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
brstruct | ⊢ Rel Struct |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-struct 15697 | . 2 ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | |
2 | 1 | relopabi 5167 | 1 ⊢ Rel Struct |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1031 ∈ wcel 1977 ∖ cdif 3537 ∩ cin 3539 ⊆ wss 3540 ∅c0 3874 {csn 4125 × cxp 5036 dom cdm 5038 Rel wrel 5043 Fun wfun 5798 ‘cfv 5804 ≤ cle 9954 ℕcn 10897 ...cfz 12197 Struct cstr 15691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-opab 4644 df-xp 5044 df-rel 5045 df-struct 15697 |
This theorem is referenced by: isstruct2 15704 strfv 15735 cnfldex 19570 |
Copyright terms: Public domain | W3C validator |