Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brstruct Structured version   Visualization version   GIF version

Theorem brstruct 15703
 Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
brstruct Rel Struct

Proof of Theorem brstruct
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-struct 15697 . 2 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
21relopabi 5167 1 Rel Struct
 Colors of variables: wff setvar class Syntax hints:   ∧ w3a 1031   ∈ wcel 1977   ∖ cdif 3537   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  {csn 4125   × cxp 5036  dom cdm 5038  Rel wrel 5043  Fun wfun 5798  ‘cfv 5804   ≤ cle 9954  ℕcn 10897  ...cfz 12197   Struct cstr 15691 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-opab 4644  df-xp 5044  df-rel 5045  df-struct 15697 This theorem is referenced by:  isstruct2  15704  strfv  15735  cnfldex  19570
 Copyright terms: Public domain W3C validator