Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-6 | Structured version Visualization version GIF version |
Description: Define the number 6. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
df-6 | ⊢ 6 = (5 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c6 10951 | . 2 class 6 | |
2 | c5 10950 | . . 3 class 5 | |
3 | c1 9816 | . . 3 class 1 | |
4 | caddc 9818 | . . 3 class + | |
5 | 2, 3, 4 | co 6549 | . 2 class (5 + 1) |
6 | 1, 5 | wceq 1475 | 1 wff 6 = (5 + 1) |
Colors of variables: wff setvar class |
This definition is referenced by: 6re 10978 6pos 10996 6m1e5 11017 5p1e6 11032 3p3e6 11038 4p2e6 11039 5p2e7 11042 6nn 11066 5lt6 11081 6p6e12 11478 7p6e13 11484 8p6e14 11492 8p8e16 11494 9p6e15 11500 9p7e16 11501 6t6e36 11522 6t6e36OLD 11523 7t6e42 11528 8t6e48 11535 8t6e48OLD 11536 9t6e54 11543 lt6abl 18119 ppiublem1 24727 ppiublem2 24728 ppiub 24729 bposlem8 24816 lgsdir2lem3 24852 2lgsoddprmlem3d 24938 rmydioph 36599 expdiophlem2 36607 stgoldbwt 40198 |
Copyright terms: Public domain | W3C validator |