HomeHome Metamath Proof Explorer
Theorem List (p. 43 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 4201-4300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrabsnifsb 4201* A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by AV, 21-Jul-2019.)
{𝑥 ∈ {𝐴} ∣ 𝜑} = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅)
 
Theoremrabsnif 4202* A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 21-Jul-2019.)
(𝑥 = 𝐴 → (𝜑𝜓))       {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅)
 
Theoremrabrsn 4203* A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Proof shortened by AV, 21-Jul-2019.)
(𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴}))
 
Theoremeuabsn2 4204* Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.)
(∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
 
Theoremeuabsn 4205 Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.)
(∃!𝑥𝜑 ↔ ∃𝑥{𝑥𝜑} = {𝑥})
 
Theoremreusn 4206* A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
(∃!𝑥𝐴 𝜑 ↔ ∃𝑦{𝑥𝐴𝜑} = {𝑦})
 
Theoremabsneu 4207 Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.)
((𝐴𝑉 ∧ {𝑥𝜑} = {𝐴}) → ∃!𝑥𝜑)
 
Theoremrabsneu 4208 Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) (Revised by Mario Carneiro, 23-Dec-2016.)
((𝐴𝑉 ∧ {𝑥𝐵𝜑} = {𝐴}) → ∃!𝑥𝐵 𝜑)
 
Theoremeusn 4209* Two ways to express "𝐴 is a singleton." (Contributed by NM, 30-Oct-2010.)
(∃!𝑥 𝑥𝐴 ↔ ∃𝑥 𝐴 = {𝑥})
 
Theoremrabsnt 4210* Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
𝐵 ∈ V    &   (𝑥 = 𝐵 → (𝜑𝜓))       ({𝑥𝐴𝜑} = {𝐵} → 𝜓)
 
Theoremprcom 4211 Commutative law for unordered pairs. (Contributed by NM, 15-Jul-1993.)
{𝐴, 𝐵} = {𝐵, 𝐴}
 
Theorempreq1 4212 Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.)
(𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})
 
Theorempreq2 4213 Equality theorem for unordered pairs. (Contributed by NM, 15-Jul-1993.)
(𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵})
 
Theorempreq12 4214 Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.)
((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷})
 
Theorempreq1i 4215 Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
𝐴 = 𝐵       {𝐴, 𝐶} = {𝐵, 𝐶}
 
Theorempreq2i 4216 Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
𝐴 = 𝐵       {𝐶, 𝐴} = {𝐶, 𝐵}
 
Theorempreq12i 4217 Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
𝐴 = 𝐵    &   𝐶 = 𝐷       {𝐴, 𝐶} = {𝐵, 𝐷}
 
Theorempreq1d 4218 Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.)
(𝜑𝐴 = 𝐵)       (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶})
 
Theorempreq2d 4219 Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.)
(𝜑𝐴 = 𝐵)       (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵})
 
Theorempreq12d 4220 Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐷})
 
Theoremtpeq1 4221 Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
(𝐴 = 𝐵 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})
 
Theoremtpeq2 4222 Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
(𝐴 = 𝐵 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷})
 
Theoremtpeq3 4223 Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
(𝐴 = 𝐵 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵})
 
Theoremtpeq1d 4224 Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
(𝜑𝐴 = 𝐵)       (𝜑 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})
 
Theoremtpeq2d 4225 Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
(𝜑𝐴 = 𝐵)       (𝜑 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷})
 
Theoremtpeq3d 4226 Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
(𝜑𝐴 = 𝐵)       (𝜑 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵})
 
Theoremtpeq123d 4227 Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)    &   (𝜑𝐸 = 𝐹)       (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹})
 
Theoremtprot 4228 Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011.)
{𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
 
Theoremtpcoma 4229 Swap 1st and 2nd members of an unordered triple. (Contributed by NM, 22-May-2015.)
{𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}
 
Theoremtpcomb 4230 Swap 2nd and 3rd members of an unordered triple. (Contributed by NM, 22-May-2015.)
{𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵}
 
Theoremtpass 4231 Split off the first element of an unordered triple. (Contributed by Mario Carneiro, 5-Jan-2016.)
{𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶})
 
Theoremqdass 4232 Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷})
 
Theoremqdassr 4233 Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴} ∪ {𝐵, 𝐶, 𝐷})
 
Theoremtpidm12 4234 Unordered triple {𝐴, 𝐴, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
{𝐴, 𝐴, 𝐵} = {𝐴, 𝐵}
 
Theoremtpidm13 4235 Unordered triple {𝐴, 𝐵, 𝐴} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
{𝐴, 𝐵, 𝐴} = {𝐴, 𝐵}
 
Theoremtpidm23 4236 Unordered triple {𝐴, 𝐵, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
{𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}
 
Theoremtpidm 4237 Unordered triple {𝐴, 𝐴, 𝐴} is just an overlong way to write {𝐴}. (Contributed by David A. Wheeler, 10-May-2015.)
{𝐴, 𝐴, 𝐴} = {𝐴}
 
Theoremtppreq3 4238 An unordered triple is an unordered pair if one of its elements is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.)
(𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
 
Theoremprid1g 4239 An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.)
(𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
 
Theoremprid2g 4240 An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.)
(𝐵𝑉𝐵 ∈ {𝐴, 𝐵})
 
Theoremprid1 4241 An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 24-Jun-1993.)
𝐴 ∈ V       𝐴 ∈ {𝐴, 𝐵}
 
Theoremprid2 4242 An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
𝐵 ∈ V       𝐵 ∈ {𝐴, 𝐵}
 
Theoremprprc1 4243 A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993.)
𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})
 
Theoremprprc2 4244 A proper class vanishes in an unordered pair. (Contributed by NM, 22-Mar-2006.)
𝐵 ∈ V → {𝐴, 𝐵} = {𝐴})
 
Theoremprprc 4245 An unordered pair containing two proper classes is the empty set. (Contributed by NM, 22-Mar-2006.)
((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = ∅)
 
Theoremtpid1 4246 One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
𝐴 ∈ V       𝐴 ∈ {𝐴, 𝐵, 𝐶}
 
Theoremtpid2 4247 One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
𝐵 ∈ V       𝐵 ∈ {𝐴, 𝐵, 𝐶}
 
Theoremtpid3g 4248 Closed theorem form of tpid3 4250. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 30-Apr-2021.)
(𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})
 
Theoremtpid3gOLD 4249 Obsolete proof of tpid3g 4248 as of 30-Apr-2021. Closed theorem form of tpid3 4250. This proof was automatically generated from the virtual deduction proof tpid3gVD 38099 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴𝐵𝐴 ∈ {𝐶, 𝐷, 𝐴})
 
Theoremtpid3 4250 One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 30-Apr-2021.)
𝐶 ∈ V       𝐶 ∈ {𝐴, 𝐵, 𝐶}
 
Theoremsnnzg 4251 The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.)
(𝐴𝑉 → {𝐴} ≠ ∅)
 
Theoremsnnz 4252 The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.)
𝐴 ∈ V       {𝐴} ≠ ∅
 
Theoremprnz 4253 A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.)
𝐴 ∈ V       {𝐴, 𝐵} ≠ ∅
 
Theoremprnzg 4254 A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.) (Proof shortened by JJ, 23-Jul-2021.)
(𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)
 
TheoremprnzgOLD 4255 Obsolete proof of prnzg 4254 as of 23-Jul-2021. (Contributed by FL, 19-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)
 
Theoremtpnz 4256 A triplet containing a set is not empty. (Contributed by NM, 10-Apr-1994.)
𝐴 ∈ V       {𝐴, 𝐵, 𝐶} ≠ ∅
 
Theoremtpnzd 4257 A triplet containing a set is not empty. (Contributed by Thierry Arnoux, 8-Apr-2019.)
(𝜑𝐴𝑉)       (𝜑 → {𝐴, 𝐵, 𝐶} ≠ ∅)
 
Theoremraltpd 4258* Convert a quantification over a triple to a conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019.)
((𝜑𝑥 = 𝐴) → (𝜓𝜒))    &   ((𝜑𝑥 = 𝐵) → (𝜓𝜃))    &   ((𝜑𝑥 = 𝐶) → (𝜓𝜏))    &   (𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶𝑋)       (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜓 ↔ (𝜒𝜃𝜏)))
 
Theoremsnss 4259 The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.)
𝐴 ∈ V       (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵)
 
Theoremeldifsn 4260 Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.)
(𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵𝐴𝐶))
 
Theoremeldifsni 4261 Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.)
(𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴𝐶)
 
Theoremneldifsn 4262 The class 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.)
¬ 𝐴 ∈ (𝐵 ∖ {𝐴})
 
Theoremneldifsnd 4263 The class 𝐴 is not in (𝐵 ∖ {𝐴}). Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}))
 
Theoremrexdifsn 4264 Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015.)
(∃𝑥 ∈ (𝐴 ∖ {𝐵})𝜑 ↔ ∃𝑥𝐴 (𝑥𝐵𝜑))
 
Theoremraldifsni 4265 Rearrangement of a property of a singleton difference. (Contributed by Stefan O'Rear, 27-Feb-2015.)
(∀𝑥 ∈ (𝐴 ∖ {𝐵}) ¬ 𝜑 ↔ ∀𝑥𝐴 (𝜑𝑥 = 𝐵))
 
Theoremraldifsnb 4266* Restricted universal quantification on a class difference with a singleton in terms of an implication. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
(∀𝑥𝐴 (𝑥𝑌𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ {𝑌})𝜑)
 
Theoremeldifvsn 4267 A set is an element of the universal class excluding a singleton iff it is not the singleton element. (Contributed by AV, 7-Apr-2019.)
(𝐴𝑉 → (𝐴 ∈ (V ∖ {𝐵}) ↔ 𝐴𝐵))
 
Theoremsnssg 4268 The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.)
(𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵))
 
Theoremdifsn 4269 An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)
 
Theoremdifprsnss 4270 Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
({𝐴, 𝐵} ∖ {𝐴}) ⊆ {𝐵}
 
Theoremdifprsn1 4271 Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.)
(𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
 
Theoremdifprsn2 4272 Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
(𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})
 
Theoremdiftpsn3 4273 Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Proof shortened by JJ, 23-Jul-2021.)
((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
 
Theoremdiftpsn3OLD 4274 Obsolete proof of diftpsn3 4273 as of 23-Jul-2021. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
 
Theoremdifpr 4275 Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018.)
(𝐴 ∖ {𝐵, 𝐶}) = ((𝐴 ∖ {𝐵}) ∖ {𝐶})
 
Theoremtpprceq3 4276 An unordered triple is an unordered pair if one of its elements is a proper class or is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.)
(¬ (𝐶 ∈ V ∧ 𝐶𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
 
Theoremtppreqb 4277 An unordered triple is an unordered pair if and only if one of its elements is a proper class or is identical with one of the another elements. (Contributed by Alexander van der Vekens, 15-Jan-2018.)
(¬ (𝐶 ∈ V ∧ 𝐶𝐴𝐶𝐵) ↔ {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
 
Theoremdifsnb 4278 (𝐵 ∖ {𝐴}) equals 𝐵 if and only if 𝐴 is not a member of 𝐵. Generalization of difsn 4269. (Contributed by David Moews, 1-May-2017.)
𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)
 
Theoremdifsnpss 4279 (𝐵 ∖ {𝐴}) is a proper subclass of 𝐵 if and only if 𝐴 is a member of 𝐵. (Contributed by David Moews, 1-May-2017.)
(𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵)
 
Theoremsnssi 4280 The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.)
(𝐴𝐵 → {𝐴} ⊆ 𝐵)
 
Theoremsnssd 4281 The singleton of an element of a class is a subset of the class (deduction rule). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝜑𝐴𝐵)       (𝜑 → {𝐴} ⊆ 𝐵)
 
Theoremdifsnid 4282 If we remove a single element from a class then put it back in, we end up with the original class. (Contributed by NM, 2-Oct-2006.)
(𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
 
Theorempw0 4283 Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
𝒫 ∅ = {∅}
 
Theorempwpw0 4284 Compute the power set of the power set of the empty set. (See pw0 4283 for the power set of the empty set.) Theorem 90 of [Suppes] p. 48. Although this theorem is a special case of pwsn 4366, we have chosen to show a direct elementary proof. (Contributed by NM, 7-Aug-1994.)
𝒫 {∅} = {∅, {∅}}
 
Theoremsnsspr1 4285 A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.)
{𝐴} ⊆ {𝐴, 𝐵}
 
Theoremsnsspr2 4286 A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.)
{𝐵} ⊆ {𝐴, 𝐵}
 
Theoremsnsstp1 4287 A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
{𝐴} ⊆ {𝐴, 𝐵, 𝐶}
 
Theoremsnsstp2 4288 A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
{𝐵} ⊆ {𝐴, 𝐵, 𝐶}
 
Theoremsnsstp3 4289 A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
{𝐶} ⊆ {𝐴, 𝐵, 𝐶}
 
Theoremprssg 4290 A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
((𝐴𝑉𝐵𝑊) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))
 
Theoremprss 4291 A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.)
𝐴 ∈ V    &   𝐵 ∈ V       ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)
 
TheoremprssOLD 4292 Obsolete proof of prss 4291 as of 23-Jul-2021. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐴 ∈ V    &   𝐵 ∈ V       ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)
 
Theoremprssi 4293 A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.)
((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
 
Theoremprssd 4294 Deduction version of prssi 4293: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐴𝐶)    &   (𝜑𝐵𝐶)       (𝜑 → {𝐴, 𝐵} ⊆ 𝐶)
 
Theoremprsspwg 4295 An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016.) (Revised by NM, 18-Jan-2018.)
((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
 
Theoremssprss 4296 A pair as subset of a pair. (Contributed by AV, 26-Oct-2020.)
((𝐴𝑉𝐵𝑊) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷))))
 
Theoremssprsseq 4297 A proper pair is a subset of a pair iff it is equal to the superset. (Contributed by AV, 26-Oct-2020.)
((𝐴𝑉𝐵𝑊𝐴𝐵) → ({𝐴, 𝐵} ⊆ {𝐶, 𝐷} ↔ {𝐴, 𝐵} = {𝐶, 𝐷}))
 
Theoremsssn 4298 The subsets of a singleton. (Contributed by NM, 24-Apr-2004.)
(𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
 
Theoremssunsn2 4299 The property of being sandwiched between two sets naturally splits under union with a singleton. This is the induction hypothesis for the determination of large powersets such as pwtp 4369. (Contributed by Mario Carneiro, 2-Jul-2016.)
((𝐵𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷}))))
 
Theoremssunsn 4300 Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.)
((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >