MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssunsn2 Structured version   Visualization version   GIF version

Theorem ssunsn2 4299
Description: The property of being sandwiched between two sets naturally splits under union with a singleton. This is the induction hypothesis for the determination of large powersets such as pwtp 4369. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ssunsn2 ((𝐵𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷}))))

Proof of Theorem ssunsn2
StepHypRef Expression
1 snssi 4280 . . . . 5 (𝐷𝐴 → {𝐷} ⊆ 𝐴)
2 unss 3749 . . . . . . 7 ((𝐵𝐴 ∧ {𝐷} ⊆ 𝐴) ↔ (𝐵 ∪ {𝐷}) ⊆ 𝐴)
32bicomi 213 . . . . . 6 ((𝐵 ∪ {𝐷}) ⊆ 𝐴 ↔ (𝐵𝐴 ∧ {𝐷} ⊆ 𝐴))
43rbaibr 944 . . . . 5 ({𝐷} ⊆ 𝐴 → (𝐵𝐴 ↔ (𝐵 ∪ {𝐷}) ⊆ 𝐴))
51, 4syl 17 . . . 4 (𝐷𝐴 → (𝐵𝐴 ↔ (𝐵 ∪ {𝐷}) ⊆ 𝐴))
65anbi1d 737 . . 3 (𝐷𝐴 → ((𝐵𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷}))))
72biimpi 205 . . . . . . 7 ((𝐵𝐴 ∧ {𝐷} ⊆ 𝐴) → (𝐵 ∪ {𝐷}) ⊆ 𝐴)
87expcom 450 . . . . . 6 ({𝐷} ⊆ 𝐴 → (𝐵𝐴 → (𝐵 ∪ {𝐷}) ⊆ 𝐴))
91, 8syl 17 . . . . 5 (𝐷𝐴 → (𝐵𝐴 → (𝐵 ∪ {𝐷}) ⊆ 𝐴))
10 ssun3 3740 . . . . . 6 (𝐴𝐶𝐴 ⊆ (𝐶 ∪ {𝐷}))
1110a1i 11 . . . . 5 (𝐷𝐴 → (𝐴𝐶𝐴 ⊆ (𝐶 ∪ {𝐷})))
129, 11anim12d 584 . . . 4 (𝐷𝐴 → ((𝐵𝐴𝐴𝐶) → ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷}))))
13 pm4.72 916 . . . 4 (((𝐵𝐴𝐴𝐶) → ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷}))) ↔ (((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})))))
1412, 13sylib 207 . . 3 (𝐷𝐴 → (((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})))))
156, 14bitrd 267 . 2 (𝐷𝐴 → ((𝐵𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})))))
16 disjsn 4192 . . . . . . 7 ((𝐴 ∩ {𝐷}) = ∅ ↔ ¬ 𝐷𝐴)
17 disj3 3973 . . . . . . 7 ((𝐴 ∩ {𝐷}) = ∅ ↔ 𝐴 = (𝐴 ∖ {𝐷}))
1816, 17bitr3i 265 . . . . . 6 𝐷𝐴𝐴 = (𝐴 ∖ {𝐷}))
19 sseq1 3589 . . . . . 6 (𝐴 = (𝐴 ∖ {𝐷}) → (𝐴𝐶 ↔ (𝐴 ∖ {𝐷}) ⊆ 𝐶))
2018, 19sylbi 206 . . . . 5 𝐷𝐴 → (𝐴𝐶 ↔ (𝐴 ∖ {𝐷}) ⊆ 𝐶))
21 uncom 3719 . . . . . . 7 ({𝐷} ∪ 𝐶) = (𝐶 ∪ {𝐷})
2221sseq2i 3593 . . . . . 6 (𝐴 ⊆ ({𝐷} ∪ 𝐶) ↔ 𝐴 ⊆ (𝐶 ∪ {𝐷}))
23 ssundif 4004 . . . . . 6 (𝐴 ⊆ ({𝐷} ∪ 𝐶) ↔ (𝐴 ∖ {𝐷}) ⊆ 𝐶)
2422, 23bitr3i 265 . . . . 5 (𝐴 ⊆ (𝐶 ∪ {𝐷}) ↔ (𝐴 ∖ {𝐷}) ⊆ 𝐶)
2520, 24syl6rbbr 278 . . . 4 𝐷𝐴 → (𝐴 ⊆ (𝐶 ∪ {𝐷}) ↔ 𝐴𝐶))
2625anbi2d 736 . . 3 𝐷𝐴 → ((𝐵𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ (𝐵𝐴𝐴𝐶)))
273simplbi 475 . . . . . . 7 ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐵𝐴)
2827a1i 11 . . . . . 6 𝐷𝐴 → ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐵𝐴))
2925biimpd 218 . . . . . 6 𝐷𝐴 → (𝐴 ⊆ (𝐶 ∪ {𝐷}) → 𝐴𝐶))
3028, 29anim12d 584 . . . . 5 𝐷𝐴 → (((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) → (𝐵𝐴𝐴𝐶)))
31 pm4.72 916 . . . . 5 ((((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) → (𝐵𝐴𝐴𝐶)) ↔ ((𝐵𝐴𝐴𝐶) ↔ (((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ∨ (𝐵𝐴𝐴𝐶))))
3230, 31sylib 207 . . . 4 𝐷𝐴 → ((𝐵𝐴𝐴𝐶) ↔ (((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ∨ (𝐵𝐴𝐴𝐶))))
33 orcom 401 . . . 4 ((((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ∨ (𝐵𝐴𝐴𝐶)) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷}))))
3432, 33syl6bb 275 . . 3 𝐷𝐴 → ((𝐵𝐴𝐴𝐶) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})))))
3526, 34bitrd 267 . 2 𝐷𝐴 → ((𝐵𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})))))
3615, 35pm2.61i 175 1 ((𝐵𝐴𝐴 ⊆ (𝐶 ∪ {𝐷})) ↔ ((𝐵𝐴𝐴𝐶) ∨ ((𝐵 ∪ {𝐷}) ⊆ 𝐴𝐴 ⊆ (𝐶 ∪ {𝐷}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-sn 4126
This theorem is referenced by:  ssunsn  4300  ssunpr  4305  sstp  4307
  Copyright terms: Public domain W3C validator