Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnb Structured version   Visualization version   GIF version

Theorem difsnb 4278
 Description: (𝐵 ∖ {𝐴}) equals 𝐵 if and only if 𝐴 is not a member of 𝐵. Generalization of difsn 4269. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difsnb 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)

Proof of Theorem difsnb
StepHypRef Expression
1 difsn 4269 . 2 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)
2 neldifsnd 4263 . . . . 5 (𝐴𝐵 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}))
3 nelne1 2878 . . . . 5 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) → 𝐵 ≠ (𝐵 ∖ {𝐴}))
42, 3mpdan 699 . . . 4 (𝐴𝐵𝐵 ≠ (𝐵 ∖ {𝐴}))
54necomd 2837 . . 3 (𝐴𝐵 → (𝐵 ∖ {𝐴}) ≠ 𝐵)
65necon2bi 2812 . 2 ((𝐵 ∖ {𝐴}) = 𝐵 → ¬ 𝐴𝐵)
71, 6impbii 198 1 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 195   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∖ cdif 3537  {csn 4125 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-v 3175  df-dif 3543  df-sn 4126 This theorem is referenced by:  difsnpss  4279  incexclem  14407  mrieqv2d  16122  mreexmrid  16126  mreexexlem2d  16128  mreexexlem4d  16130  acsfiindd  17000
 Copyright terms: Public domain W3C validator