MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabrsn Structured version   Visualization version   GIF version

Theorem rabrsn 4203
Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Proof shortened by AV, 21-Jul-2019.)
Assertion
Ref Expression
rabrsn (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴}))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑀(𝑥)

Proof of Theorem rabrsn
StepHypRef Expression
1 rabsnifsb 4201 . . 3 {𝑥 ∈ {𝐴} ∣ 𝜑} = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅)
21eqeq2i 2622 . 2 (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ 𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅))
3 ifeqor 4082 . . . 4 (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴} ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅)
4 orcom 401 . . . 4 ((if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴} ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅) ↔ (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅ ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴}))
53, 4mpbi 219 . . 3 (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅ ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴})
6 eqeq1 2614 . . . 4 (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → (𝑀 = ∅ ↔ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅))
7 eqeq1 2614 . . . 4 (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → (𝑀 = {𝐴} ↔ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴}))
86, 7orbi12d 742 . . 3 (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → ((𝑀 = ∅ ∨ 𝑀 = {𝐴}) ↔ (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅ ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴})))
95, 8mpbiri 247 . 2 (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → (𝑀 = ∅ ∨ 𝑀 = {𝐴}))
102, 9sylbi 206 1 (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382   = wceq 1475  {crab 2900  [wsbc 3402  c0 3874  ifcif 4036  {csn 4125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-nul 3875  df-if 4037  df-sn 4126
This theorem is referenced by:  hashrabrsn  13022  hashrabsn01  13023  hashrabsn1  13024  dvnprodlem3  38838
  Copyright terms: Public domain W3C validator