MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssunsn Structured version   Visualization version   GIF version

Theorem ssunsn 4300
Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ssunsn ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})))

Proof of Theorem ssunsn
StepHypRef Expression
1 ssunsn2 4299 . 2 ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ ((𝐵𝐴𝐴𝐵) ∨ ((𝐵 ∪ {𝐶}) ⊆ 𝐴𝐴 ⊆ (𝐵 ∪ {𝐶}))))
2 ancom 465 . . . 4 ((𝐵𝐴𝐴𝐵) ↔ (𝐴𝐵𝐵𝐴))
3 eqss 3583 . . . 4 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
42, 3bitr4i 266 . . 3 ((𝐵𝐴𝐴𝐵) ↔ 𝐴 = 𝐵)
5 ancom 465 . . . 4 (((𝐵 ∪ {𝐶}) ⊆ 𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 ⊆ (𝐵 ∪ {𝐶}) ∧ (𝐵 ∪ {𝐶}) ⊆ 𝐴))
6 eqss 3583 . . . 4 (𝐴 = (𝐵 ∪ {𝐶}) ↔ (𝐴 ⊆ (𝐵 ∪ {𝐶}) ∧ (𝐵 ∪ {𝐶}) ⊆ 𝐴))
75, 6bitr4i 266 . . 3 (((𝐵 ∪ {𝐶}) ⊆ 𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ 𝐴 = (𝐵 ∪ {𝐶}))
84, 7orbi12i 542 . 2 (((𝐵𝐴𝐴𝐵) ∨ ((𝐵 ∪ {𝐶}) ⊆ 𝐴𝐴 ⊆ (𝐵 ∪ {𝐶}))) ↔ (𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})))
91, 8bitri 263 1 ((𝐵𝐴𝐴 ⊆ (𝐵 ∪ {𝐶})) ↔ (𝐴 = 𝐵𝐴 = (𝐵 ∪ {𝐶})))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wo 382  wa 383   = wceq 1475  cun 3538  wss 3540  {csn 4125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-sn 4126
This theorem is referenced by:  ssunpr  4305
  Copyright terms: Public domain W3C validator