Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnz Structured version   Visualization version   GIF version

Theorem prnz 4253
 Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.)
Hypothesis
Ref Expression
prnz.1 𝐴 ∈ V
Assertion
Ref Expression
prnz {𝐴, 𝐵} ≠ ∅

Proof of Theorem prnz
StepHypRef Expression
1 prnz.1 . . 3 𝐴 ∈ V
21prid1 4241 . 2 𝐴 ∈ {𝐴, 𝐵}
32ne0ii 3882 1 {𝐴, 𝐵} ≠ ∅
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 1977   ≠ wne 2780  Vcvv 3173  ∅c0 3874  {cpr 4127 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-v 3175  df-dif 3543  df-un 3545  df-nul 3875  df-sn 4126  df-pr 4128 This theorem is referenced by:  prnzgOLD  4255  opnz  4868  propssopi  4896  fiint  8122  wilthlem2  24595  upgrbi  25760  edgwlk  26059  umgrabi  26510  shincli  27605  chincli  27703  1wlkvtxiedg  40829
 Copyright terms: Public domain W3C validator