MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusn Structured version   Visualization version   GIF version

Theorem eusn 4209
Description: Two ways to express "𝐴 is a singleton." (Contributed by NM, 30-Oct-2010.)
Assertion
Ref Expression
eusn (∃!𝑥 𝑥𝐴 ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem eusn
StepHypRef Expression
1 euabsn 4205 . 2 (∃!𝑥 𝑥𝐴 ↔ ∃𝑥{𝑥𝑥𝐴} = {𝑥})
2 abid2 2732 . . . 4 {𝑥𝑥𝐴} = 𝐴
32eqeq1i 2615 . . 3 ({𝑥𝑥𝐴} = {𝑥} ↔ 𝐴 = {𝑥})
43exbii 1764 . 2 (∃𝑥{𝑥𝑥𝐴} = {𝑥} ↔ ∃𝑥 𝐴 = {𝑥})
51, 4bitri 263 1 (∃!𝑥 𝑥𝐴 ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475  wex 1695  wcel 1977  ∃!weu 2458  {cab 2596  {csn 4125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-sn 4126
This theorem is referenced by:  initoid  16478  termoid  16479  initoeu2lem1  16487  funpartfv  31222  irinitoringc  41861
  Copyright terms: Public domain W3C validator