HomeHome Metamath Proof Explorer
Theorem List (p. 57 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 5601-5700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempredeq3 5601 Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.)
(𝑋 = 𝑌 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑌))
 
Theoremnfpred 5602 Bound-variable hypothesis builder for the predecessor class. (Contributed by Scott Fenton, 9-Jun-2018.)
𝑥𝑅    &   𝑥𝐴    &   𝑥𝑋       𝑥Pred(𝑅, 𝐴, 𝑋)
 
Theorempredpredss 5603 If 𝐴 is a subset of 𝐵, then their predecessor classes are also subsets. (Contributed by Scott Fenton, 2-Feb-2011.)
(𝐴𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ Pred(𝑅, 𝐵, 𝑋))
 
Theorempredss 5604 The predecessor class of 𝐴 is a subset of 𝐴. (Contributed by Scott Fenton, 2-Feb-2011.)
Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴
 
Theoremsspred 5605 Another subset/predecessor class relationship. (Contributed by Scott Fenton, 6-Feb-2011.)
((𝐵𝐴 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))
 
Theoremdfpred2 5606* An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 8-Feb-2011.)
𝑋 ∈ V       Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ {𝑦𝑦𝑅𝑋})
 
Theoremdfpred3 5607* An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.)
𝑋 ∈ V       Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋}
 
Theoremdfpred3g 5608* An alternate definition of predecessor class when 𝑋 is a set. (Contributed by Scott Fenton, 13-Jun-2018.)
(𝑋𝑉 → Pred(𝑅, 𝐴, 𝑋) = {𝑦𝐴𝑦𝑅𝑋})
 
Theoremelpredim 5609 Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012.)
𝑋 ∈ V       (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋)
 
Theoremelpred 5610 Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011.)
𝑌 ∈ V       (𝑋𝐷 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌𝐴𝑌𝑅𝑋)))
 
Theoremelpredg 5611 Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.)
((𝑋𝐵𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
 
Theorempredasetex 5612 The predecessor class exists when 𝐴 does. (Contributed by Scott Fenton, 8-Feb-2011.)
𝐴 ∈ V       Pred(𝑅, 𝐴, 𝑋) ∈ V
 
Theoremdffr4 5613* Alternate definition of well-founded relation. (Contributed by Scott Fenton, 2-Feb-2011.)
(𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅))
 
Theorempredel 5614 Membership in the predecessor class implies membership in the base class. (Contributed by Scott Fenton, 11-Feb-2011.)
(𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝐴)
 
Theorempredpo 5615 Property of the precessor class for partial orderings. (Contributed by Scott Fenton, 28-Apr-2012.)
((𝑅 Po 𝐴𝑋𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)))
 
Theorempredso 5616 Property of the predecessor class for strict orderings. (Contributed by Scott Fenton, 11-Feb-2011.)
((𝑅 Or 𝐴𝑋𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)))
 
Theorempredbrg 5617 Closed form of elpredim 5609. (Contributed by Scott Fenton, 13-Apr-2011.) (Revised by NM, 5-Apr-2016.)
((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋)
 
Theoremsetlikespec 5618 If 𝑅 is set-like in 𝐴, then all predecessors classes of elements of 𝐴 exist. (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
((𝑋𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑋) ∈ V)
 
Theorempredidm 5619 Idempotent law for the predecessor class. (Contributed by Scott Fenton, 29-Mar-2011.)
Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = Pred(𝑅, 𝐴, 𝑋)
 
Theorempredin 5620 Intersection law for predecessor classes. (Contributed by Scott Fenton, 29-Mar-2011.)
Pred(𝑅, (𝐴𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∩ Pred(𝑅, 𝐵, 𝑋))
 
Theorempredun 5621 Union law for predecessor classes. (Contributed by Scott Fenton, 29-Mar-2011.)
Pred(𝑅, (𝐴𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∪ Pred(𝑅, 𝐵, 𝑋))
 
Theorempreddif 5622 Difference law for predecessor classes. (Contributed by Scott Fenton, 14-Apr-2011.)
Pred(𝑅, (𝐴𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∖ Pred(𝑅, 𝐵, 𝑋))
 
Theorempredep 5623 The predecessor under the epsilon relationship is equivalent to an intersection. (Contributed by Scott Fenton, 27-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝑋𝐵 → Pred( E , 𝐴, 𝑋) = (𝐴𝑋))
 
Theorempreddowncl 5624* A property of classes that are downward closed under predecessor. (Contributed by Scott Fenton, 13-Apr-2011.)
((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑋𝐵 → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋)))
 
Theorempredpoirr 5625 Given a partial ordering, 𝑋 is not a member of its predecessor class. (Contributed by Scott Fenton, 17-Apr-2011.)
(𝑅 Po 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))
 
Theorempredfrirr 5626 Given a well-founded relationship, 𝑋 is not a member of its predecessor class. (Contributed by Scott Fenton, 22-Apr-2011.)
(𝑅 Fr 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))
 
Theorempred0 5627 The predecessor class over is always . (Contributed by Scott Fenton, 16-Apr-2011.) (Proof shortened by AV, 11-Jun-2021.)
Pred(𝑅, ∅, 𝑋) = ∅
 
2.3.11  Well-founded induction
 
Theoremtz6.26 5628* All nonempty (possibly proper) subclasses of 𝐴, which has a well-founded relation 𝑅, have 𝑅-minimal elements. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
(((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
 
Theoremtz6.26i 5629* All nonempty (possibly proper) subclasses of 𝐴, which has a well-founded relation 𝑅, have 𝑅-minimal elements. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 14-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
𝑅 We 𝐴    &   𝑅 Se 𝐴       ((𝐵𝐴𝐵 ≠ ∅) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
 
Theoremwfi 5630* The Principle of Well-Founded Induction. Theorem 6.27 of [TakeutiZaring] p. 32. This principle states that if 𝐵 is a subclass of a well-ordered class 𝐴 with the property that every element of 𝐵 whose inital segment is included in 𝐴 is itself equal to 𝐴. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
(((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵))) → 𝐴 = 𝐵)
 
Theoremwfii 5631* The Principle of Well-Founded Induction. Theorem 6.27 of [TakeutiZaring] p. 32. This principle states that if 𝐵 is a subclass of a well-ordered class 𝐴 with the property that every element of 𝐵 whose inital segment is included in 𝐴 is itself equal to 𝐴. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
𝑅 We 𝐴    &   𝑅 Se 𝐴       ((𝐵𝐴 ∧ ∀𝑦𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵𝑦𝐵)) → 𝐴 = 𝐵)
 
Theoremwfisg 5632* Well-Founded Induction Schema. If a property passes from all elements less than 𝑦 of a well-founded class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. (Contributed by Scott Fenton, 11-Feb-2011.)
(𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))       ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
 
Theoremwfis 5633* Well-Founded Induction Schema. If all elements less than a given set 𝑥 of the well-founded class 𝐴 have a property (induction hypothesis), then all elements of 𝐴 have that property. (Contributed by Scott Fenton, 29-Jan-2011.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))       (𝑦𝐴𝜑)
 
Theoremwfis2fg 5634* Well-Founded Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011.)
𝑦𝜓    &   (𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))       ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
 
Theoremwfis2f 5635* Well Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   𝑦𝜓    &   (𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))       (𝑦𝐴𝜑)
 
Theoremwfis2g 5636* Well-Founded Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011.)
(𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))       ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
 
Theoremwfis2 5637* Well Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   (𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))       (𝑦𝐴𝜑)
 
Theoremwfis3 5638* Well Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011.)
𝑅 We 𝐴    &   𝑅 Se 𝐴    &   (𝑦 = 𝑧 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜑𝜒))    &   (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))       (𝐵𝐴𝜒)
 
2.3.12  Ordinals
 
Syntaxword 5639 Extend the definition of a wff to include the ordinal predicate.
wff Ord 𝐴
 
Syntaxcon0 5640 Extend the definition of a class to include the class of all ordinal numbers. (The 0 in the name prevents creating a file called con.html, which causes problems in Windows.)
class On
 
Syntaxwlim 5641 Extend the definition of a wff to include the limit ordinal predicate.
wff Lim 𝐴
 
Syntaxcsuc 5642 Extend class notation to include the successor function.
class suc 𝐴
 
Definitiondf-ord 5643 Define the ordinal predicate, which is true for a class that is transitive and is well-ordered by the epsilon relation. Variant of definition of [BellMachover] p. 468. (Contributed by NM, 17-Sep-1993.)
(Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
 
Definitiondf-on 5644 Define the class of all ordinal numbers. Definition 7.11 of [TakeutiZaring] p. 38. (Contributed by NM, 5-Jun-1994.)
On = {𝑥 ∣ Ord 𝑥}
 
Definitiondf-lim 5645 Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 5698, dflim3 6939, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.)
(Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
 
Definitiondf-suc 5646 Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1" (see oa1suc 7498). Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Ordinal natural numbers defined using this successor function and 0 as the empty set are also called von Neumann ordinals; 0 is the empty set {}, 1 is {0, {0}}, 2 is {1, {1}}, and so on. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 5717), so that the successor of any ordinal class is still an ordinal class (ordsuc 6906), simplifying certain proofs. Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.)
suc 𝐴 = (𝐴 ∪ {𝐴})
 
Theoremordeq 5647 Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993.)
(𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
 
Theoremelong 5648 An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
(𝐴𝑉 → (𝐴 ∈ On ↔ Ord 𝐴))
 
Theoremelon 5649 An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
𝐴 ∈ V       (𝐴 ∈ On ↔ Ord 𝐴)
 
Theoremeloni 5650 An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.)
(𝐴 ∈ On → Ord 𝐴)
 
Theoremelon2 5651 An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.)
(𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))
 
Theoremlimeq 5652 Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))
 
Theoremordwe 5653 Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.)
(Ord 𝐴 → E We 𝐴)
 
Theoremordtr 5654 An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.)
(Ord 𝐴 → Tr 𝐴)
 
Theoremordfr 5655 Epsilon is well-founded on an ordinal class. (Contributed by NM, 22-Apr-1994.)
(Ord 𝐴 → E Fr 𝐴)
 
Theoremordelss 5656 An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.)
((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
 
Theoremtrssord 5657 A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.)
((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)
 
Theoremordirr 5658 Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. We prove this without invoking the Axiom of Regularity. (Contributed by NM, 2-Jan-1994.)
(Ord 𝐴 → ¬ 𝐴𝐴)
 
Theoremnordeq 5659 A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.)
((Ord 𝐴𝐵𝐴) → 𝐴𝐵)
 
Theoremordn2lp 5660 An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.)
(Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
 
Theoremtz7.5 5661* A nonempty subclass of an ordinal class has a minimal element. Proposition 7.5 of [TakeutiZaring] p. 36. (Contributed by NM, 18-Feb-2004.) (Revised by David Abernethy, 16-Mar-2011.)
((Ord 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 (𝐵𝑥) = ∅)
 
Theoremordelord 5662 An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.)
((Ord 𝐴𝐵𝐴) → Ord 𝐵)
 
Theoremtron 5663 The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.)
Tr On
 
Theoremordelon 5664 An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.)
((Ord 𝐴𝐵𝐴) → 𝐵 ∈ On)
 
Theoremonelon 5665 An element of an ordinal number is an ordinal number. Theorem 2.2(iii) of [BellMachover] p. 469. (Contributed by NM, 26-Oct-2003.)
((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
 
Theoremtz7.7 5666 A transitive class belongs to an ordinal class iff it is strictly included in it. Proposition 7.7 of [TakeutiZaring] p. 37. (Contributed by NM, 5-May-1994.)
((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 ↔ (𝐵𝐴𝐵𝐴)))
 
Theoremordelssne 5667 For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of [TakeutiZaring] p. 37. (Contributed by NM, 25-Nov-1995.)
((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
 
Theoremordelpss 5668 For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of [TakeutiZaring] p. 37. (Contributed by NM, 17-Jun-1998.)
((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴𝐵))
 
Theoremordsseleq 5669 For ordinal classes, inclusion is equivalent to membership or equality. (Contributed by NM, 25-Nov-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
 
Theoremordin 5670 The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.)
((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
 
Theoremonin 5671 The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)
 
Theoremordtri3or 5672 A trichotomy law for ordinals. Proposition 7.10 of [TakeutiZaring] p. 38. (Contributed by NM, 10-May-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
 
Theoremordtri1 5673 A trichotomy law for ordinals. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
 
Theoremontri1 5674 A trichotomy law for ordinal numbers. (Contributed by NM, 6-Nov-2003.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
 
Theoremordtri2 5675 A trichotomy law for ordinals. (Contributed by NM, 25-Nov-1995.)
((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
 
Theoremordtri3 5676 A trichotomy law for ordinals. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by JJ, 24-Sep-2021.)
((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴𝐵𝐵𝐴)))
 
Theoremordtri3OLD 5677 Obsolete proof of ordtri3 5676 as of 24-Sep-2021. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴𝐵𝐵𝐴)))
 
Theoremordtri4 5678 A trichotomy law for ordinals. (Contributed by NM, 1-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵)))
 
Theoremorddisj 5679 An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.)
(Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅)
 
Theoremonfr 5680 The ordinal class is well-founded. This lemma is needed for ordon 6874 in order to eliminate the need for the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
E Fr On
 
Theoremonelpss 5681 Relationship between membership and proper subset of an ordinal number. (Contributed by NM, 15-Sep-1995.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵)))
 
Theoremonsseleq 5682 Relationship between subset and membership of an ordinal number. (Contributed by NM, 15-Sep-1995.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
 
Theoremonelss 5683 An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
 
Theoremordtr1 5684 Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.)
(Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremordtr2 5685 Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
((Ord 𝐴 ∧ Ord 𝐶) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremordtr3 5686 Transitive law for ordinal classes. (Contributed by Mario Carneiro, 30-Dec-2014.) (Proof shortened by JJ, 24-Sep-2021.)
((Ord 𝐵 ∧ Ord 𝐶) → (𝐴𝐵 → (𝐴𝐶𝐶𝐵)))
 
Theoremordtr3OLD 5687 Obsolete proof of ordtr3 5686 as of 24-Sep-2021. (Contributed by Mario Carneiro, 30-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
((Ord 𝐵 ∧ Ord 𝐶) → (𝐴𝐵 → (𝐴𝐶𝐶𝐵)))
 
Theoremontr1 5688 Transitive law for ordinal numbers. Theorem 7M(b) of [Enderton] p. 192. (Contributed by NM, 11-Aug-1994.)
(𝐶 ∈ On → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremontr2 5689 Transitive law for ordinal numbers. Exercise 3 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Nov-2003.)
((𝐴 ∈ On ∧ 𝐶 ∈ On) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremordunidif 5690 The union of an ordinal stays the same if a subset equal to one of its elements is removed. (Contributed by NM, 10-Dec-2004.)
((Ord 𝐴𝐵𝐴) → (𝐴𝐵) = 𝐴)
 
Theoremordintdif 5691 If 𝐵 is smaller than 𝐴, then it equals the intersection of the difference. Exercise 11 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.)
((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴𝐵) ≠ ∅) → 𝐵 = (𝐴𝐵))
 
Theoremonintss 5692* If a property is true for an ordinal number, then the minimum ordinal number for which it is true is smaller or equal. Theorem Schema 61 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴 ∈ On → (𝜓 {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴))
 
Theoremoneqmini 5693* A way to show that an ordinal number equals the minimum of a collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.)
(𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐴 = 𝐵))
 
Theoremord0 5694 The empty set is an ordinal class. (Contributed by NM, 11-May-1994.)
Ord ∅
 
Theorem0elon 5695 The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.)
∅ ∈ On
 
Theoremord0eln0 5696 A nonempty ordinal contains the empty set. (Contributed by NM, 25-Nov-1995.)
(Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
 
Theoremon0eln0 5697 An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.)
(𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
 
Theoremdflim2 5698 An alternate definition of a limit ordinal. (Contributed by NM, 4-Nov-2004.)
(Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
 
Theoreminton 5699 The intersection of the class of ordinal numbers is the empty set. (Contributed by NM, 20-Oct-2003.)
On = ∅
 
Theoremnlim0 5700 The empty set is not a limit ordinal. (Contributed by NM, 24-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
¬ Lim ∅
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >