HomeHome Metamath Proof Explorer
Theorem List (p. 339 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 33801-33900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Syntaxcpmap 33801 Extend class notation with projective map.
class pmap
 
Definitiondf-llines 33802* Define the set of all "lattice lines" (lattice elements which cover an atom) in a Hilbert lattice 𝑘, in other words all elements of height 2 (or lattice dimension 2 or projective dimension 1). (Contributed by NM, 16-Jun-2012.)
LLines = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥})
 
Definitiondf-lplanes 33803* Define the set of all "lattice planes" (lattice elements which cover a line) in a Hilbert lattice 𝑘, in other words all elements of height 3 (or lattice dimension 3 or projective dimension 2). (Contributed by NM, 16-Jun-2012.)
LPlanes = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (LLines‘𝑘)𝑝( ⋖ ‘𝑘)𝑥})
 
Definitiondf-lvols 33804* Define the set of all 3-dimensional "lattice volumes" (lattice elements which cover a plane) in a Hilbert lattice 𝑘, in other words all elements of height 4 (or lattice dimension 4 or projective dimension 3). (Contributed by NM, 1-Jul-2012.)
LVols = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (LPlanes‘𝑘)𝑝( ⋖ ‘𝑘)𝑥})
 
Definitiondf-lines 33805* Define set of all projective lines for a Hilbert lattice (actually in any set at all, for simplicity). The join of two distinct atoms equals a line. Definition of lines in item 1 of [Holland95] p. 222. (Contributed by NM, 19-Sep-2011.)
Lines = (𝑘 ∈ V ↦ {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})})
 
Definitiondf-pointsN 33806* Define set of all projective points in a Hilbert lattice (actually in any set at all, for simplicity). A projective point is the singleton of a lattice atom. Definition 15.1 of [MaedaMaeda] p. 61. Note that item 1 in [Holland95] p. 222 defines a point as the atom itself, but this leads to a complicated subspace ordering that may be either membership or inclusion based on its arguments. (Contributed by NM, 2-Oct-2011.)
Points = (𝑘 ∈ V ↦ {𝑞 ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑞 = {𝑝}})
 
Definitiondf-psubsp 33807* Define set of all projective subspaces. Based on definition of subspace in [Holland95] p. 212. (Contributed by NM, 2-Oct-2011.)
PSubSp = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝𝑠𝑞𝑠𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠))})
 
Definitiondf-pmap 33808* Define projective map for 𝑘 at 𝑎. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.)
pmap = (𝑘 ∈ V ↦ (𝑎 ∈ (Base‘𝑘) ↦ {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)𝑎}))
 
Theoremllnset 33809* The set of lattice lines in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.)
𝐵 = (Base‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       (𝐾𝐷𝑁 = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
 
Theoremislln 33810* The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.)
𝐵 = (Base‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       (𝐾𝐷 → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴 𝑝𝐶𝑋)))
 
Theoremislln4 33811* The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.)
𝐵 = (Base‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       ((𝐾𝐷𝑋𝐵) → (𝑋𝑁 ↔ ∃𝑝𝐴 𝑝𝐶𝑋))
 
Theoremllni 33812 Condition implying a lattice line. (Contributed by NM, 17-Jun-2012.)
𝐵 = (Base‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       (((𝐾𝐷𝑋𝐵𝑃𝐴) ∧ 𝑃𝐶𝑋) → 𝑋𝑁)
 
Theoremllnbase 33813 A lattice line is a lattice element. (Contributed by NM, 16-Jun-2012.)
𝐵 = (Base‘𝐾)    &   𝑁 = (LLines‘𝐾)       (𝑋𝑁𝑋𝐵)
 
Theoremislln3 33814* The predicate "is a lattice line". (Contributed by NM, 17-Jun-2012.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
 
Theoremislln2 33815* The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞)))))
 
Theoremllni2 33816 The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ 𝑁)
 
Theoremllnnleat 33817 An atom cannot majorize a lattice line. (Contributed by NM, 8-Jul-2012.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → ¬ 𝑋 𝑃)
 
Theoremllnneat 33818 A lattice line is not an atom. (Contributed by NM, 19-Jun-2012.)
𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑁) → ¬ 𝑋𝐴)
 
Theorem2atneat 33819 The join of two distinct atoms is not an atom. (Contributed by NM, 12-Oct-2012.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → ¬ (𝑃 𝑄) ∈ 𝐴)
 
Theoremllnn0 33820 A lattice line is nonzero. (Contributed by NM, 15-Jul-2012.)
0 = (0.‘𝐾)    &   𝑁 = (LLines‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑁) → 𝑋0 )
 
Theoremislln2a 33821 The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) ∈ 𝑁𝑃𝑄))
 
Theoremllnle 33822* Any element greater than 0 and not an atom majorizes a lattice line. (Contributed by NM, 28-Jun-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑦𝑁 𝑦 𝑋)
 
Theorematcvrlln2 33823 An atom under a line is covered by it. (Contributed by NM, 2-Jul-2012.)
= (le‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑋𝑁) ∧ 𝑃 𝑋) → 𝑃𝐶𝑋)
 
Theorematcvrlln 33824 An element covering an atom is a lattice line and vice-versa. (Contributed by NM, 18-Jun-2012.)
𝐵 = (Base‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝐴𝑌𝑁))
 
TheoremllnexatN 33825* Given an atom on a line, there is another atom whose join equals the line. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑃 𝑋) → ∃𝑞𝐴 (𝑃𝑞𝑋 = (𝑃 𝑞)))
 
Theoremllncmp 33826 If two lattice lines are comparable, they are equal. (Contributed by NM, 19-Jun-2012.)
= (le‘𝐾)    &   𝑁 = (LLines‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋 𝑌𝑋 = 𝑌))
 
Theoremllnnlt 33827 Two lattice lines cannot satisfy the less than relation. (Contributed by NM, 26-Jun-2012.)
< = (lt‘𝐾)    &   𝑁 = (LLines‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ¬ 𝑋 < 𝑌)
 
Theorem2llnmat 33828 Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.)
= (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)
 
Theorem2at0mat0 33829 Special case of 2atmat0 33830 where one atom could be zero. (Contributed by NM, 30-May-2013.)
= (join‘𝐾)    &    = (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
 
Theorem2atmat0 33830 The meet of two unequal lines (expressed as joins of atoms) is an atom or zero. (Contributed by NM, 2-Dec-2012.)
= (join‘𝐾)    &    = (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
 
Theorem2atm 33831 An atom majorized by two different atom joins (which could be atoms or lines) is equal to their intersection. (Contributed by NM, 30-Jun-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑇 (𝑃 𝑄) ∧ 𝑇 (𝑅 𝑆) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑇 = ((𝑃 𝑄) (𝑅 𝑆)))
 
Theoremps-2c 33832 Variation of projective geometry axiom ps-2 33782. (Contributed by NM, 3-Jul-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ ((¬ 𝑃 (𝑄 𝑅) ∧ 𝑆𝑇) ∧ (𝑃 𝑅) ≠ (𝑆 𝑇) ∧ (𝑆 (𝑃 𝑄) ∧ 𝑇 (𝑄 𝑅)))) → ((𝑃 𝑅) (𝑆 𝑇)) ∈ 𝐴)
 
Theoremlplnset 33833* The set of lattice planes in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.)
𝐵 = (Base‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       (𝐾𝐴𝑃 = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
 
Theoremislpln 33834* The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012.)
𝐵 = (Base‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       (𝐾𝐴 → (𝑋𝑃 ↔ (𝑋𝐵 ∧ ∃𝑦𝑁 𝑦𝐶𝑋)))
 
Theoremislpln4 33835* The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.)
𝐵 = (Base‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾𝐴𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑦𝑁 𝑦𝐶𝑋))
 
Theoremlplni 33836 Condition implying a lattice plane. (Contributed by NM, 20-Jun-2012.)
𝐵 = (Base‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       (((𝐾𝐷𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → 𝑌𝑃)
 
Theoremislpln3 33837* The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑦𝑁𝑝𝐴𝑝 𝑦𝑋 = (𝑦 𝑝))))
 
Theoremlplnbase 33838 A lattice plane is a lattice element. (Contributed by NM, 17-Jun-2012.)
𝐵 = (Base‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       (𝑋𝑃𝑋𝐵)
 
Theoremislpln5 33839* The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 24-Jun-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟))))
 
Theoremislpln2 33840* The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 25-Jun-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       (𝐾 ∈ HL → (𝑋𝑃 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴𝑞𝐴𝑟𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ 𝑋 = ((𝑝 𝑞) 𝑟)))))
 
Theoremlplni2 33841 The join of 3 different atoms is a lattice plane. (Contributed by NM, 4-Jul-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) ∈ 𝑃)
 
Theoremlvolex3N 33842* There is an atom outside of a lattice plane i.e. a 3-dimensional lattice volume exists. (Contributed by NM, 28-Jul-2012.) (New usage is discouraged.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑃) → ∃𝑞𝐴 ¬ 𝑞 𝑋)
 
TheoremllnmlplnN 33843 The intersection of a line with a plane not containing it is an atom. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ (¬ 𝑋 𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)
 
Theoremlplnle 33844* Any element greater than 0 and not an atom and not a lattice line majorizes a lattice plane. (Contributed by NM, 28-Jun-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ∃𝑦𝑃 𝑦 𝑋)
 
Theoremlplnnle2at 33845 A lattice line (or atom) cannot majorize a lattice plane. (Contributed by NM, 8-Jul-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → ¬ 𝑋 (𝑄 𝑅))
 
Theoremlplnnleat 33846 A lattice plane cannot majorize an atom. (Contributed by NM, 14-Jul-2012.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) → ¬ 𝑋 𝑄)
 
Theoremlplnnlelln 33847 A lattice plane is not less than or equal to a lattice line. (Contributed by NM, 14-Jul-2012.)
= (le‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → ¬ 𝑋 𝑌)
 
Theorem2atnelpln 33848 The join of two atoms is not a lattice plane. (Contributed by NM, 16-Jul-2012.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → ¬ (𝑄 𝑅) ∈ 𝑃)
 
Theoremlplnneat 33849 No lattice plane is an atom. (Contributed by NM, 15-Jul-2012.)
𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑃) → ¬ 𝑋𝐴)
 
Theoremlplnnelln 33850 No lattice plane is a lattice line. (Contributed by NM, 19-Jun-2012.)
𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑃) → ¬ 𝑋𝑁)
 
Theoremlplnn0N 33851 A lattice plane is nonzero. (Contributed by NM, 15-Jul-2012.) (New usage is discouraged.)
0 = (0.‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑃) → 𝑋0 )
 
Theoremislpln2a 33852 The predicate "is a lattice plane" for join of atoms. (Contributed by NM, 16-Jul-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))))
 
Theoremislpln2ah 33853 The predicate "is a lattice plane" for join of atoms. Version of islpln2a 33852 expressed with an abbreviation hypothesis. (Contributed by NM, 30-Jul-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)    &   𝑌 = ((𝑄 𝑅) 𝑆)       ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑌𝑃 ↔ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))))
 
TheoremlplnriaN 33854 Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)    &   𝑌 = ((𝑄 𝑅) 𝑆)       ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) → ¬ 𝑄 (𝑅 𝑆))
 
TheoremlplnribN 33855 Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)    &   𝑌 = ((𝑄 𝑅) 𝑆)       ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) → ¬ 𝑅 (𝑄 𝑆))
 
Theoremlplnric 33856 Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)    &   𝑌 = ((𝑄 𝑅) 𝑆)       ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) → ¬ 𝑆 (𝑄 𝑅))
 
Theoremlplnri1 33857 Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)    &   𝑌 = ((𝑄 𝑅) 𝑆)       ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) → 𝑄𝑅)
 
Theoremlplnri2N 33858 Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)    &   𝑌 = ((𝑄 𝑅) 𝑆)       ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) → 𝑄𝑆)
 
Theoremlplnri3N 33859 Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)    &   𝑌 = ((𝑄 𝑅) 𝑆)       ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) → 𝑅𝑆)
 
TheoremlplnllnneN 33860 Two lattice lines defined by atoms defining a lattice plane are not equal. (Contributed by NM, 9-Oct-2012.) (New usage is discouraged.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)    &   𝑌 = ((𝑄 𝑅) 𝑆)       ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑌𝑃) → (𝑄 𝑆) ≠ (𝑅 𝑆))
 
Theoremllncvrlpln2 33861 A lattice line under a lattice plane is covered by it. (Contributed by NM, 24-Jun-2012.)
= (le‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑃) ∧ 𝑋 𝑌) → 𝑋𝐶𝑌)
 
Theoremllncvrlpln 33862 An element covering a lattice line is a lattice plane and vice-versa. (Contributed by NM, 26-Jun-2012.)
𝐵 = (Base‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → (𝑋𝑁𝑌𝑃))
 
Theorem2lplnmN 33863 If the join of two lattice planes covers one of them, their meet is a lattice line. (Contributed by NM, 30-Jun-2012.) (New usage is discouraged.)
= (join‘𝐾)    &    = (meet‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → (𝑋 𝑌) ∈ 𝑁)
 
Theorem2llnmj 33864 The meet of two lattice lines is an atom iff their join is a lattice plane. (Contributed by NM, 27-Jun-2012.)
= (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → ((𝑋 𝑌) ∈ 𝐴 ↔ (𝑋 𝑌) ∈ 𝑃))
 
Theorem2atmat 33865 The meet of two intersecting lines (expressed as joins of atoms) is an atom. (Contributed by NM, 21-Nov-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑃𝑄) ∧ (𝑅𝑆 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
 
Theoremlplncmp 33866 If two lattice planes are comparable, they are equal. (Contributed by NM, 24-Jun-2012.)
= (le‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌𝑋 = 𝑌))
 
TheoremlplnexatN 33867* Given a lattice line on a lattice plane, there is an atom whose join with the line equals the plane. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → ∃𝑞𝐴𝑞 𝑌𝑋 = (𝑌 𝑞)))
 
TheoremlplnexllnN 33868* Given an atom on a lattice plane, there is a lattice line whose join with the atom equals the plane. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ 𝑄 𝑋) → ∃𝑦𝑁𝑄 𝑦𝑋 = (𝑦 𝑄)))
 
Theoremlplnnlt 33869 Two lattice planes cannot satisfy the less than relation. (Contributed by NM, 7-Jul-2012.)
< = (lt‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ¬ 𝑋 < 𝑌)
 
Theorem2llnjaN 33870 The join of two different lattice lines in a lattice plane equals the plane (version of 2llnjN 33871 in terms of atoms). (Contributed by NM, 5-Jul-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝑃) ∧ (𝑄𝐴𝑅𝐴𝑄𝑅) ∧ (𝑆𝐴𝑇𝐴𝑆𝑇)) ∧ ((𝑄 𝑅) 𝑊 ∧ (𝑆 𝑇) 𝑊 ∧ (𝑄 𝑅) ≠ (𝑆 𝑇))) → ((𝑄 𝑅) (𝑆 𝑇)) = 𝑊)
 
Theorem2llnjN 33871 The join of two different lattice lines in a lattice plane equals the plane. (Contributed by NM, 4-Jul-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) = 𝑊)
 
Theorem2llnm2N 33872 The meet of two different lattice lines in a lattice plane is an atom. (Contributed by NM, 5-Jul-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) ∈ 𝐴)
 
Theorem2llnm3N 33873 Two lattice lines in a lattice plane always meet. (Contributed by NM, 5-Jul-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑃 = (LPlanes‘𝐾)       ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) → (𝑋 𝑌) ≠ 0 )
 
Theorem2llnm4 33874 Two lattice lines that majorize the same atom always meet. (Contributed by NM, 20-Jul-2012.)
= (le‘𝐾)    &    = (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → (𝑋 𝑌) ≠ 0 )
 
Theorem2llnmeqat 33875 An atom equals the intersection of two majorizing lines. (Contributed by NM, 3-Apr-2013.)
= (le‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑃𝐴) ∧ (𝑋𝑌𝑃 (𝑋 𝑌))) → 𝑃 = (𝑋 𝑌))
 
Theoremlvolset 33876* The set of 3-dim lattice volumes in a Hilbert lattice. (Contributed by NM, 1-Jul-2012.)
𝐵 = (Base‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝑃 = (LPlanes‘𝐾)    &   𝑉 = (LVols‘𝐾)       (𝐾𝐴𝑉 = {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥})
 
Theoremislvol 33877* The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
𝐵 = (Base‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝑃 = (LPlanes‘𝐾)    &   𝑉 = (LVols‘𝐾)       (𝐾𝐴 → (𝑋𝑉 ↔ (𝑋𝐵 ∧ ∃𝑦𝑃 𝑦𝐶𝑋)))
 
Theoremislvol4 33878* The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
𝐵 = (Base‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝑃 = (LPlanes‘𝐾)    &   𝑉 = (LVols‘𝐾)       ((𝐾𝐴𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑦𝑃 𝑦𝐶𝑋))
 
Theoremlvoli 33879 Condition implying a 3-dim lattice volume. (Contributed by NM, 1-Jul-2012.)
𝐵 = (Base‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝑃 = (LPlanes‘𝐾)    &   𝑉 = (LVols‘𝐾)       (((𝐾𝐷𝑌𝐵𝑋𝑃) ∧ 𝑋𝐶𝑌) → 𝑌𝑉)
 
Theoremislvol3 33880* The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)    &   𝑉 = (LVols‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑦𝑃𝑝𝐴𝑝 𝑦𝑋 = (𝑦 𝑝))))
 
Theoremlvoli3 33881 Condition implying a 3-dim lattice volume. (Contributed by NM, 2-Aug-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑃 = (LPlanes‘𝐾)    &   𝑉 = (LVols‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝑃𝑄𝐴) ∧ ¬ 𝑄 𝑋) → (𝑋 𝑄) ∈ 𝑉)
 
Theoremlvolbase 33882 A 3-dim lattice volume is a lattice element. (Contributed by NM, 1-Jul-2012.)
𝐵 = (Base‘𝐾)    &   𝑉 = (LVols‘𝐾)       (𝑋𝑉𝑋𝐵)
 
Theoremislvol5 33883* The predicate "is a 3-dim lattice volume" in terms of atoms. (Contributed by NM, 1-Jul-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑉 = (LVols‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠))))
 
Theoremislvol2 33884* The predicate "is a 3-dim lattice volume" in terms of atoms. (Contributed by NM, 1-Jul-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑉 = (LVols‘𝐾)       (𝐾 ∈ HL → (𝑋𝑉 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ 𝑋 = (((𝑝 𝑞) 𝑟) 𝑠)))))
 
Theoremlvoli2 33885 The join of 4 different atoms is a lattice volume. (Contributed by NM, 8-Jul-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑉 = (LVols‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
 
Theoremlvolnle3at 33886 A lattice plane (or lattice line or atom) cannot majorize a lattice volume. (Contributed by NM, 8-Jul-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑉 = (LVols‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
 
Theoremlvolnleat 33887 An atom cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑉 = (LVols‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑉𝑃𝐴) → ¬ 𝑋 𝑃)
 
Theoremlvolnlelln 33888 A lattice line cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.)
= (le‘𝐾)    &   𝑁 = (LLines‘𝐾)    &   𝑉 = (LVols‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑁) → ¬ 𝑋 𝑌)
 
Theoremlvolnlelpln 33889 A lattice plane cannot majorize a lattice volume. (Contributed by NM, 14-Jul-2012.)
= (le‘𝐾)    &   𝑃 = (LPlanes‘𝐾)    &   𝑉 = (LVols‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑉𝑌𝑃) → ¬ 𝑋 𝑌)
 
Theorem3atnelvolN 33890 The join of 3 atoms is not a lattice volume. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑉 = (LVols‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑉)
 
Theorem2atnelvolN 33891 The join of two atoms is not a lattice volume. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.)
= (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑉 = (LVols‘𝐾)       ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ¬ (𝑃 𝑄) ∈ 𝑉)
 
TheoremlvolneatN 33892 No lattice volume is an atom. (Contributed by NM, 15-Jul-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑉 = (LVols‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑉) → ¬ 𝑋𝐴)
 
Theoremlvolnelln 33893 No lattice volume is a lattice line. (Contributed by NM, 15-Jul-2012.)
𝑁 = (LLines‘𝐾)    &   𝑉 = (LVols‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑉) → ¬ 𝑋𝑁)
 
Theoremlvolnelpln 33894 No lattice volume is a lattice plane. (Contributed by NM, 19-Jun-2012.)
𝑃 = (LPlanes‘𝐾)    &   𝑉 = (LVols‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑉) → ¬ 𝑋𝑃)
 
Theoremlvoln0N 33895 A lattice volume is nonzero. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.)
0 = (0.‘𝐾)    &   𝑉 = (LVols‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑉) → 𝑋0 )
 
Theoremislvol2aN 33896 The predicate "is a lattice volume". (Contributed by NM, 16-Jul-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑉 = (LVols‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))))
 
Theorem4atlem0a 33897 Lemma for 4at 33917. (Contributed by NM, 10-Jul-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑅 ((𝑃 𝑄) 𝑆))
 
Theorem4atlem0ae 33898 Lemma for 4at 33917. (Contributed by NM, 10-Jul-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝑄 (𝑃 𝑅))
 
Theorem4atlem0be 33899 Lemma for 4at 33917. (Contributed by NM, 10-Jul-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑃𝑅)
 
Theorem4atlem3 33900 Lemma for 4at 33917. Break inequality into 4 cases. (Contributed by NM, 8-Jul-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >