 Home Metamath Proof ExplorerTheorem List (p. 344 of 424) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-27159) Hilbert Space Explorer (27160-28684) Users' Mathboxes (28685-42360)

Theorem List for Metamath Proof Explorer - 34301-34400   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremislhp2 34301 The predicate "is a co-atom (lattice hyperplane)." (Contributed by NM, 18-May-2012.)
𝐵 = (Base‘𝐾)    &    1 = (1.‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾𝐴𝑊𝐵) → (𝑊𝐻𝑊𝐶 1 ))

Theoremlhpbase 34302 A co-atom is a member of the lattice base set (i.e. a lattice element). (Contributed by NM, 18-May-2012.)
𝐵 = (Base‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (𝑊𝐻𝑊𝐵)

Theoremlhp1cvr 34303 The lattice unit covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012.)
1 = (1.‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾𝐴𝑊𝐻) → 𝑊𝐶 1 )

Theoremlhplt 34304 An atom under a co-atom is strictly less than it. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
= (le‘𝐾)    &    < = (lt‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊)) → 𝑃 < 𝑊)

Theoremlhp2lt 34305 The join of two atoms under a co-atom is strictly less than it. (Contributed by NM, 8-Jul-2013.)
= (le‘𝐾)    &    < = (lt‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑃 𝑊) ∧ (𝑄𝐴𝑄 𝑊)) → (𝑃 𝑄) < 𝑊)

Theoremlhpexlt 34306* There exists an atom less than a co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
< = (lt‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 𝑝 < 𝑊)

Theoremlhp0lt 34307 A co-atom is greater than zero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
< = (lt‘𝐾)    &    0 = (0.‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 < 𝑊)

Theoremlhpn0 34308 A co-atom is nonzero. TODO: is this needed? (Contributed by NM, 26-Apr-2013.)
0 = (0.‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊0 )

Theoremlhpexle 34309* There exists an atom under a co-atom. (Contributed by NM, 26-Apr-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 𝑝 𝑊)

Theoremlhpexnle 34310* There exists an atom not under a co-atom. (Contributed by NM, 12-Apr-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝 𝑊)

Theoremlhpexle1lem 34311* Lemma for lhpexle1 34312 and others that eliminates restrictions on 𝑋. (Contributed by NM, 24-Jul-2013.)
(𝜑 → ∃𝑝𝐴 (𝑝 𝑊𝜓))    &   ((𝜑 ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝜓𝑝𝑋))       (𝜑 → ∃𝑝𝐴 (𝑝 𝑊𝜓𝑝𝑋))

Theoremlhpexle1 34312* There exists an atom under a co-atom different from any given element. (Contributed by NM, 24-Jul-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))

Theoremlhpexle2lem 34313* Lemma for lhpexle2 34314. (Contributed by NM, 19-Jun-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑋 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))

Theoremlhpexle2 34314* There exists atom under a co-atom different from any two other elements. (Contributed by NM, 24-Jul-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))

Theoremlhpexle3lem 34315* There exists atom under a co-atom different from any 3 other atoms. TODO: study if adant*,simp* usage can be improved. (Contributed by NM, 9-Jul-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑋 𝑊𝑌 𝑊𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))

Theoremlhpexle3 34316* There exists atom under a co-atom different from any three other elements. (Contributed by NM, 24-Jul-2013.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))

Theoremlhpex2leN 34317* There exist at least two different atoms under a co-atom. This allows us to create a line under the co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) (New usage is discouraged.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴𝑞𝐴 (𝑝 𝑊𝑞 𝑊𝑝𝑞))

Theoremlhpoc 34318 The orthocomplement of a co-atom (lattice hyperplane) is an atom. (Contributed by NM, 18-May-2012.)
𝐵 = (Base‘𝐾)    &    = (oc‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝑊𝐻 ↔ ( 𝑊) ∈ 𝐴))

Theoremlhpoc2N 34319 The orthocomplement of an atom is a co-atom (lattice hyperplane). (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (oc‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝑊𝐴 ↔ ( 𝑊) ∈ 𝐻))

Theoremlhpocnle 34320 The orthocomplement of a co-atom is not under it. (Contributed by NM, 22-May-2012.)
= (le‘𝐾)    &    = (oc‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ¬ ( 𝑊) 𝑊)

Theoremlhpocat 34321 The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013.)
= (oc‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 𝑊) ∈ 𝐴)

Theoremlhpocnel 34322 The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012.)
= (le‘𝐾)    &    = (oc‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( 𝑊) ∈ 𝐴 ∧ ¬ ( 𝑊) 𝑊))

Theoremlhpocnel2 34323 The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 20-Feb-2014.)
= (le‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑃 = ((oc‘𝐾)‘𝑊)       ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))

Theoremlhpjat1 34324 The join of a co-atom (hyperplane) and an atom not under it is the lattice unit. (Contributed by NM, 18-May-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    1 = (1.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑊 𝑃) = 1 )

Theoremlhpjat2 34325 The join of a co-atom (hyperplane) and an atom not under it is the lattice unit. (Contributed by NM, 4-Jun-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    1 = (1.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 1 )

Theoremlhpj1 34326 The join of a co-atom (hyperplane) and an element not under it is the lattice unit. (Contributed by NM, 7-Dec-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    1 = (1.‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑊 𝑋) = 1 )

Theoremlhpmcvr 34327 The meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 7-Dec-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (meet‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑋 𝑊)𝐶𝑋)

Theoremlhpmcvr2 34328* Alternate way to express that the meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 9-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))

Theoremlhpmcvr3 34329 Specialization of lhpmcvr2 34328. TODO: Use this to simplify many uses of (𝑃 (𝑋 𝑊)) = 𝑋 to become 𝑃 𝑋. (Contributed by NM, 6-Apr-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑋 ↔ (𝑃 (𝑋 𝑊)) = 𝑋))

Theoremlhpmcvr4N 34330 Specialization of lhpmcvr2 34328. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊𝑃 𝑋)) → ¬ 𝑃 𝑌)

Theoremlhpmcvr5N 34331* Specialization of lhpmcvr2 34328. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ ¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))

Theoremlhpmcvr6N 34332* Specialization of lhpmcvr2 34328. (Contributed by NM, 6-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵 ∧ (𝑋 𝑌) 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ ¬ 𝑝 𝑌𝑝 𝑋))

Theoremlhpm0atN 34333 If the meet of a lattice hyperplane with a nonzero element is zero, the element is an atom. (Contributed by NM, 28-Apr-2014.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋0 ∧ (𝑋 𝑊) = 0 )) → 𝑋𝐴)

Theoremlhpmat 34334 An element covered by the lattice unit, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012.)
= (le‘𝐾)    &    = (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = 0 )

Theoremlhpmatb 34335 An element covered by the lattice unit, when conjoined with an atom, equals zero iff the atom is not under it. (Contributed by NM, 15-Jun-2013.)
= (le‘𝐾)    &    = (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴) → (¬ 𝑃 𝑊 ↔ (𝑃 𝑊) = 0 ))

Theoremlhp2at0 34336 Join and meet with different atoms under co-atom 𝑊. (Contributed by NM, 15-Jun-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ((𝑃 𝑈) 𝑉) = 0 )

Theoremlhp2atnle 34337 Inequality for 2 different atoms under co-atom 𝑊. (Contributed by NM, 17-Jun-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ¬ 𝑉 (𝑃 𝑈))

Theoremlhp2atne 34338 Inequality for joins with 2 different atoms under co-atom 𝑊. (Contributed by NM, 22-Jul-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑈𝑉) → (𝑃 𝑈) ≠ (𝑄 𝑉))

Theoremlhp2at0nle 34339 Inequality for 2 different atoms (or an atom and zero) under co-atom 𝑊. (Contributed by NM, 28-Jul-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ¬ 𝑉 (𝑃 𝑈))

Theoremlhp2at0ne 34340 Inequality for joins with 2 different atoms (or an atom and zero) under co-atom 𝑊. (Contributed by NM, 28-Jul-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &    0 = (0.‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑈𝑉) → (𝑃 𝑈) ≠ (𝑄 𝑉))

Theoremlhpelim 34341 Eliminate an atom not under a lattice hyperplane. TODO: Look at proofs using lhpmat 34334 to see if this can be used to shorten them. (Contributed by NM, 27-Apr-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑋𝐵) → ((𝑃 (𝑋 𝑊)) 𝑊) = (𝑋 𝑊))

Theoremlhpmod2i2 34342 Modular law for hyperplanes analogous to atmod2i2 34166 for atoms. (Contributed by NM, 9-Feb-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)))

Theoremlhpmod6i1 34343 Modular law for hyperplanes analogous to complement of atmod2i1 34165 for atoms. (Contributed by NM, 1-Jun-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊))

Theoremlhprelat3N 34344* The Hilbert lattice is relatively atomic with respect to co-atoms (lattice hyperplanes). Dual version of hlrelat3 33716. (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    < = (lt‘𝐾)    &    = (meet‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ∃𝑤𝐻 (𝑋 (𝑌 𝑤) ∧ (𝑌 𝑤)𝐶𝑌))

Theoremcdlemb2 34345* Given two atoms not under the fiducial (reference) co-atom 𝑊, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 30-May-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄) → ∃𝑟𝐴𝑟 𝑊 ∧ ¬ 𝑟 (𝑃 𝑄)))

Theoremlhple 34346 Property of a lattice element under a co-atom. (Contributed by NM, 28-Feb-2014.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → ((𝑃 𝑋) 𝑊) = 𝑋)

Theoremlhpat 34347 Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 23-May-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)

Theoremlhpat4N 34348 Property of an atom under a co-atom. (Contributed by NM, 24-Nov-2013.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑈𝐴𝑈 𝑊)) → ((𝑃 𝑈) 𝑊) = 𝑈)

Theoremlhpat2 34349 Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 21-Nov-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑅 = ((𝑃 𝑄) 𝑊)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑅𝐴)

Theoremlhpat3 34350 There is only one atom under both 𝑃 𝑄 and co-atom 𝑊. (Contributed by NM, 21-Nov-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑅 = ((𝑃 𝑄) 𝑊)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → (¬ 𝑆 𝑊𝑆𝑅))

Theorem4atexlemk 34351 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝐾 ∈ HL)

Theorem4atexlemw 34352 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝑊𝐻)

Theorem4atexlempw 34353 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))

Theorem4atexlemp 34354 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝑃𝐴)

Theorem4atexlemq 34355 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝑄𝐴)

Theorem4atexlems 34356 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝑆𝐴)

Theorem4atexlemt 34357 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝑇𝐴)

Theorem4atexlemutvt 34358 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑 → (𝑈 𝑇) = (𝑉 𝑇))

Theorem4atexlempnq 34359 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝑃𝑄)

Theorem4atexlemnslpq 34360 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑 → ¬ 𝑆 (𝑃 𝑄))

Theorem4atexlemkl 34361 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝐾 ∈ Lat)

Theorem4atexlemkc 34362 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))       (𝜑𝐾 ∈ CvLat)

Theorem4atexlemwb 34363 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))    &   𝐻 = (LHyp‘𝐾)       (𝜑𝑊 ∈ (Base‘𝐾))

Theorem4atexlempsb 34364 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))

Theorem4atexlemqtb 34365 Lemma for 4atexlem7 34379. (Contributed by NM, 24-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))

Theorem4atexlempns 34366 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (𝜑𝑃𝑆)

Theorem4atexlemswapqr 34367 Lemma for 4atexlem7 34379. Swap 𝑄 and 𝑅, so that theorems involving 𝐶 can be reused for 𝐷. Note that 𝑈 must be expanded because it involves 𝑄. (Contributed by NM, 25-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))    &    = (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       (𝜑 → (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑆𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑅 𝑄)) ∧ (𝑇𝐴 ∧ (((𝑃 𝑅) 𝑊) 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑅 ∧ ¬ 𝑆 (𝑃 𝑅))))

Theorem4atexlemu 34368 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)       (𝜑𝑈𝐴)

Theorem4atexlemv 34369 Lemma for 4atexlem7 34379. (Contributed by NM, 23-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝑉 = ((𝑃 𝑆) 𝑊)       (𝜑𝑉𝐴)

Theorem4atexlemunv 34370 Lemma for 4atexlem7 34379. (Contributed by NM, 21-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝑉 = ((𝑃 𝑆) 𝑊)       (𝜑𝑈𝑉)

Theorem4atexlemtlw 34371 Lemma for 4atexlem7 34379. (Contributed by NM, 24-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝑉 = ((𝑃 𝑆) 𝑊)       (𝜑𝑇 𝑊)

Theorem4atexlemntlpq 34372 Lemma for 4atexlem7 34379. (Contributed by NM, 24-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝑉 = ((𝑃 𝑆) 𝑊)       (𝜑 → ¬ 𝑇 (𝑃 𝑄))

Theorem4atexlemc 34373 Lemma for 4atexlem7 34379. (Contributed by NM, 24-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝑉 = ((𝑃 𝑆) 𝑊)    &   𝐶 = ((𝑄 𝑇) (𝑃 𝑆))       (𝜑𝐶𝐴)

Theorem4atexlemnclw 34374 Lemma for 4atexlem7 34379. (Contributed by NM, 24-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝑉 = ((𝑃 𝑆) 𝑊)    &   𝐶 = ((𝑄 𝑇) (𝑃 𝑆))       (𝜑 → ¬ 𝐶 𝑊)

Theorem4atexlemex2 34375* Lemma for 4atexlem7 34379. Show that when 𝐶𝑆, 𝐶 satisfies the existence condition of the consequent. (Contributed by NM, 25-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝑉 = ((𝑃 𝑆) 𝑊)    &   𝐶 = ((𝑄 𝑇) (𝑃 𝑆))       ((𝜑𝐶𝑆) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))

Theorem4atexlemcnd 34376 Lemma for 4atexlem7 34379. (Contributed by NM, 24-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝑉 = ((𝑃 𝑆) 𝑊)    &   𝐶 = ((𝑄 𝑇) (𝑃 𝑆))    &   𝐷 = ((𝑅 𝑇) (𝑃 𝑆))       (𝜑𝐶𝐷)

Theorem4atexlemex4 34377* Lemma for 4atexlem7 34379. Show that when 𝐶 = 𝑆, 𝐷 satisfies the existence condition of the consequent. (Contributed by NM, 26-Nov-2012.)
(𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)    &   𝑈 = ((𝑃 𝑄) 𝑊)    &   𝑉 = ((𝑃 𝑆) 𝑊)    &   𝐶 = ((𝑄 𝑇) (𝑃 𝑆))    &   𝐷 = ((𝑅 𝑇) (𝑃 𝑆))       ((𝜑𝐶 = 𝑆) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))

Theorem4atexlemex6 34378* Lemma for 4atexlem7 34379. (Contributed by NM, 25-Nov-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝑆𝐴) ∧ ((𝑃 𝑅) = (𝑄 𝑅) ∧ 𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))

Theorem4atexlem7 34379* Whenever there are at least 4 atoms under 𝑃 𝑄 (specifically, 𝑃, 𝑄, 𝑟, and (𝑃 𝑄) 𝑊), there are also at least 4 atoms under 𝑃 𝑆. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p q/0 and hence p s/0 contains at least four atoms..." Note that by cvlsupr2 33648, our (𝑃 𝑟) = (𝑄 𝑟) is a shorter way to express 𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄). With a longer proof, the condition ¬ 𝑆 (𝑃 𝑄) could be eliminated (see 4atex 34380), although for some purposes this more restricted lemma may be adequate. (Contributed by NM, 25-Nov-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))

Theorem4atex 34380* Whenever there are at least 4 atoms under 𝑃 𝑄 (specifically, 𝑃, 𝑄, 𝑟, and (𝑃 𝑄) 𝑊), there are also at least 4 atoms under 𝑃 𝑆. This proves the statement in Lemma E of [Crawley] p. 114, last line, "...p q/0 and hence p s/0 contains at least four atoms..." Note that by cvlsupr2 33648, our (𝑃 𝑟) = (𝑄 𝑟) is a shorter way to express 𝑟𝑃𝑟𝑄𝑟 (𝑃 𝑄). (Contributed by NM, 27-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆𝐴) ∧ (𝑃𝑄 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))

Theorem4atex2 34381* More general version of 4atex 34380 for a line 𝑆 𝑇 not necessarily connected to 𝑃 𝑄. (Contributed by NM, 27-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑇𝐴 ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑆 𝑧) = (𝑇 𝑧)))

Theorem4atex2-0aOLDN 34382* Same as 4atex2 34381 except that 𝑆 is zero. (Contributed by NM, 27-May-2013.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑆 𝑧) = (𝑇 𝑧)))

Theorem4atex2-0bOLDN 34383* Same as 4atex2 34381 except that 𝑇 is zero. (Contributed by NM, 27-May-2013.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄𝑇 = (0.‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑆 𝑧) = (𝑇 𝑧)))

Theorem4atex2-0cOLDN 34384* Same as 4atex2 34381 except that 𝑆 and 𝑇 are zero. TODO: do we need this one or 4atex2-0aOLDN 34382 or 4atex2-0bOLDN 34383? (Contributed by NM, 27-May-2013.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑆 = (0.‘𝐾)) ∧ (𝑃𝑄𝑇 = (0.‘𝐾) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑆 𝑧) = (𝑇 𝑧)))

Theorem4atex3 34385* More general version of 4atex 34380 for a line 𝑆 𝑇 not necessarily connected to 𝑃 𝑄. (Contributed by NM, 29-May-2013.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐻 = (LHyp‘𝐾)       (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ (𝑇𝐴𝑆𝑇) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑆𝑧𝑇𝑧 (𝑆 𝑇))))

Theoremlautset 34386* The set of lattice automorphisms. (Contributed by NM, 11-May-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐼 = (LAut‘𝐾)       (𝐾𝐴𝐼 = {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑓𝑥) (𝑓𝑦)))})

Theoremislaut 34387* The predictate "is a lattice automorphism." (Contributed by NM, 11-May-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐼 = (LAut‘𝐾)       (𝐾𝐴 → (𝐹𝐼 ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)))))

Theoremlautle 34388 Less-than or equal property of a lattice automorphism. (Contributed by NM, 19-May-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐼 = (LAut‘𝐾)       (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))

Theoremlaut1o 34389 A lattice automorphism is one-to-one and onto. (Contributed by NM, 19-May-2012.)
𝐵 = (Base‘𝐾)    &   𝐼 = (LAut‘𝐾)       ((𝐾𝐴𝐹𝐼) → 𝐹:𝐵1-1-onto𝐵)

Theoremlaut11 34390 One-to-one property of a lattice automorphism. (Contributed by NM, 20-May-2012.)
𝐵 = (Base‘𝐾)    &   𝐼 = (LAut‘𝐾)       (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) = (𝐹𝑌) ↔ 𝑋 = 𝑌))

Theoremlautcl 34391 A lattice automorphism value belongs to the base set. (Contributed by NM, 20-May-2012.)
𝐵 = (Base‘𝐾)    &   𝐼 = (LAut‘𝐾)       (((𝐾𝑉𝐹𝐼) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)

TheoremlautcnvclN 34392 Reverse closure of a lattice automorphism. (Contributed by NM, 25-May-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝐼 = (LAut‘𝐾)       (((𝐾𝑉𝐹𝐼) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)

Theoremlautcnvle 34393 Less-than or equal property of lattice automorphism converse. (Contributed by NM, 19-May-2012.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐼 = (LAut‘𝐾)       (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))

Theoremlautcnv 34394 The converse of a lattice automorphism is a lattice automorphism. (Contributed by NM, 10-May-2013.)
𝐼 = (LAut‘𝐾)       ((𝐾𝑉𝐹𝐼) → 𝐹𝐼)

Theoremlautlt 34395 Less-than property of a lattice automorphism. (Contributed by NM, 20-May-2012.)
𝐵 = (Base‘𝐾)    &    < = (lt‘𝐾)    &   𝐼 = (LAut‘𝐾)       ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 < 𝑌 ↔ (𝐹𝑋) < (𝐹𝑌)))

Theoremlautcvr 34396 Covering property of a lattice automorphism. (Contributed by NM, 20-May-2012.)
𝐵 = (Base‘𝐾)    &   𝐶 = ( ⋖ ‘𝐾)    &   𝐼 = (LAut‘𝐾)       ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋𝐶𝑌 ↔ (𝐹𝑋)𝐶(𝐹𝑌)))

Theoremlautj 34397 Meet property of a lattice automorphism. (Contributed by NM, 25-May-2012.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &   𝐼 = (LAut‘𝐾)       ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Theoremlautm 34398 Meet property of a lattice automorphism. (Contributed by NM, 19-May-2012.)
𝐵 = (Base‘𝐾)    &    = (meet‘𝐾)    &   𝐼 = (LAut‘𝐾)       ((𝐾 ∈ Lat ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹‘(𝑋 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Theoremlauteq 34399* A lattice automorphism argument is equal to its value if all atoms are equal to their values. (Contributed by NM, 24-May-2012.)
𝐵 = (Base‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝐼 = (LAut‘𝐾)       (((𝐾 ∈ HL ∧ 𝐹𝐼𝑋𝐵) ∧ ∀𝑝𝐴 (𝐹𝑝) = 𝑝) → (𝐹𝑋) = 𝑋)

Theoremidlaut 34400 The identity function is a lattice automorphism. (Contributed by NM, 18-May-2012.)
𝐵 = (Base‘𝐾)    &   𝐼 = (LAut‘𝐾)       (𝐾𝐴 → ( I ↾ 𝐵) ∈ 𝐼)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
 Copyright terms: Public domain < Previous  Next >