HomeHome Metamath Proof Explorer
Theorem List (p. 321 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27159)
  Hilbert Space Explorer  Hilbert Space Explorer
(27160-28684)
  Users' Mathboxes  Users' Mathboxes
(28685-42360)
 

Theorem List for Metamath Proof Explorer - 32001-32100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembj-equsal 32001 Shorter proof of equsal 2279. (Contributed by BJ, 30-Sep-2018.) Proof modification is discouraged to avoid using equsal 2279, but "min */exc equsal" is ok. (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
21.14.4.16  Some Principia Mathematica proofs

References are made to the second edition (1927, reprinted 1963) of Principia Mathematica, Vol. 1. Theorems are referred to in the form "PM*xx.xx".

 
Theoremstdpc5t 32002 Closed form of stdpc5 2063. (Possible to place it before 19.21t 2061 and use it to prove 19.21t 2061). (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
 
Theorembj-stdpc5 32003 More direct proof of stdpc5 2063. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))
 
Theorem2stdpc5 32004 A double stdpc5 2063 (one direction of PM*11.3). See also 2stdpc4 2342 and 19.21vv 37597. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
𝑥𝜑    &   𝑦𝜑       (∀𝑥𝑦(𝜑𝜓) → (𝜑 → ∀𝑥𝑦𝜓))
 
Theorembj-19.21t 32005 Proof of 19.21t 2061 from stdpc5t 32002. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
(Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
 
Theoremexlimii 32006 Inference associated with exlimi 2073. Inferring a theorem when it is implied by an antecedent which may be true. (Contributed by BJ, 15-Sep-2018.)
𝑥𝜓    &   (𝜑𝜓)    &   𝑥𝜑       𝜓
 
Theoremax11-pm 32007 Proof of ax-11 2021 similar to PM's proof of alcom 2024 (PM*11.2). For a proof closer to PM's proof, see ax11-pm2 32011. Axiom ax-11 2021 is used in the proof only through nfa2 2027. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
Theoremax6er 32008 Another form of ax6e 2238. ( Could be placed right after ax6e 2238). (Contributed by BJ, 15-Sep-2018.)
𝑥 𝑦 = 𝑥
 
Theoremexlimiieq1 32009 Inferring a theorem when it is implied by an equality which may be true. (Contributed by BJ, 30-Sep-2018.)
𝑥𝜑    &   (𝑥 = 𝑦𝜑)       𝜑
 
Theoremexlimiieq2 32010 Inferring a theorem when it is implied by an equality which may be true. (Contributed by BJ, 15-Sep-2018.) (Revised by BJ, 30-Sep-2018.)
𝑦𝜑    &   (𝑥 = 𝑦𝜑)       𝜑
 
Theoremax11-pm2 32011* Proof of ax-11 2021 from the standard axioms of predicate calculus, similar to PM's proof of alcom 2024 (PM*11.2). This proof requires that 𝑥 and 𝑦 be distinct. Axiom ax-11 2021 is used in the proof only through nfal 2139, nfsb 2428, sbal 2450, sb8 2412. See also ax11-pm 32007. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
21.14.4.17  Alternate definition of substitution
 
Theorembj-sbsb 32012 Biconditional showing two possible (dual) definitions of substitution df-sb 1868 not using dummy variables. (Contributed by BJ, 19-Mar-2021.)
(((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)) ↔ (∀𝑥(𝑥 = 𝑦𝜑) ∨ (𝑥 = 𝑦𝜑)))
 
Theorembj-dfsb2 32013 Alternate (dual) definition of substitution df-sb 1868 not using dummy variables. (Contributed by BJ, 19-Mar-2021.)
([𝑦 / 𝑥]𝜑 ↔ (∀𝑥(𝑥 = 𝑦𝜑) ∨ (𝑥 = 𝑦𝜑)))
 
21.14.4.18  Lemmas for substitution
 
Theorembj-sbf3 32014 Substitution has no effect on a bound variabe (existential quantifier case); see sbf2 2370. (Contributed by BJ, 2-May-2019.)
([𝑦 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑)
 
Theorembj-sbf4 32015 Substitution has no effect on a bound variabe (non-freeness case); see sbf2 2370. (Contributed by BJ, 2-May-2019.)
([𝑦 / 𝑥]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜑)
 
Theorembj-sbnf 32016* Move non-free predicate in and out of substitution; see sbal 2450 and sbex 2451. (Contributed by BJ, 2-May-2019.)
([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑)
 
21.14.4.19  Existential uniqueness
 
Theorembj-eu3f 32017* Version of eu3v 2486 where the dv condition is replaced with a non-freeness hypothesis. This is a "backup" of a theorem that used to be in the main part with label "eu3" and was deprecated in favor of eu3v 2486. (Contributed by NM, 8-Jul-1994.) (Proof shortened by BJ, 31-May-2019.)
𝑦𝜑       (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
Theorembj-eumo0 32018* Existential uniqueness implies "at most one." Used to be in the main part and deprecated in favor of eumo 2487 and mo2 2467. (Contributed by NM, 8-Jul-1994.) (Revised by BJ, 8-Jun-2019.)
𝑦𝜑       (∃!𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
 
21.14.4.20  First-logic: miscellaneous

Miscellaneous theorems of first-order logic.

 
Theorembj-nfdiOLD 32019 Obsolete proof temporarily kept here in view of the change of nf5 2102 to df-nf 1701. (Contributed by NM, 8-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → Ⅎ𝑥𝜑)       𝑥𝜑
 
Theorembj-sbieOLD 32020 Obsolete proof temporarily kept here to check it gives no additional insight. (Contributed by NM, 8-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
Theorembj-sbidmOLD 32021 Obsolete proof temporarily kept here to check it gives no additional insight. (Contributed by NM, 8-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑦 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 
Theorembj-mo3OLD 32022* Obsolete proof temporarily kept here to check it gives no additional insight. (Contributed by NM, 8-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑦𝜑       (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 
Theorembj-syl66ib 32023 A mixed syllogism inference derived from syl6ib 240. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
(𝜑 → (𝜓𝜃))    &   (𝜃𝜏)    &   (𝜏𝜒)       (𝜑 → (𝜓𝜒))
 
Theorembj-nfbiit 32024 Closed form of nfbii 1770 (the label " nfbi 1821 " is taken for another result. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
(∀𝑥(𝜑𝜓) → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓))
 
Theorembj-nfimt 32025 Closed form of nfim 1813. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
(Ⅎ𝑥𝜑 → (Ⅎ𝑥𝜓 → Ⅎ𝑥(𝜑𝜓)))
 
Theorembj-nfimt2 32026 Uncurried form of bj-nfimt 32025 and closed form of nfim 1813. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜓) → Ⅎ𝑥(𝜑𝜓))
 
Theorembj-dvelimdv 32027* Deduction form of dvelim 2325 with DV conditions. Typically, 𝑧 is a fresh variable used for the implicit substitution hypothesis that results in 𝜒 (namely, 𝜓 can be thought as 𝜓(𝑥, 𝑦) and 𝜒 as 𝜓(𝑥, 𝑧)). So the theorem says that if x is effectively free in 𝜓(𝑥, 𝑧), then if x and y are not the same variable, then 𝑥 is also effectively free in 𝜓(𝑥, 𝑦), in a context 𝜑.

One can weakend the implicit substitution hypothesis by adding the antecedent 𝜑 but this typically does not make the theorem much more useful. Similarly, one could use non-freeness hypotheses instead of DV conditions but since this result is typically used when 𝑧 is a dummy variable, this would not be of much benefit. One could also remove DV(z,x) since in the proof nfv 1830 can be replaced with nfal 2139 followed by nfn 1768.

Remark: nfald 2151 uses ax-11 2021; it might be possible to inline and use ax11w 1994 instead, but there is still a use via 19.12 2150 anyway. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)

𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝑧 = 𝑦 → (𝜒𝜓))       ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
 
Theorembj-dvelimdv1 32028* Curried form (exported form) of bj-dvelimdv 32027. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝑧 = 𝑦 → (𝜒𝜓))       (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓))
 
Theorembj-dvelimv 32029* A version of dvelim 2325 using the "non-free" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑧 = 𝑦 → (𝜓𝜑))       (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑)
 
Theorembj-nfeel2 32030* Non-freeness in an equality. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦𝑧)
 
Theorembj-axc14nf 32031 Proof of a version of axc14 2360 using the "non-free" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
(¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑥𝑦))
 
Theorembj-axc14 32032 Alternate proof of axc14 2360 (even when inlining the above results, this gives a shorter proof). (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
(¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥𝑦 → ∀𝑧 𝑥𝑦)))
 
21.14.5  Set theory
 
21.14.5.1  Eliminability of class terms

In this section, we give a sketch of the proof of the Eliminability Theorem for class terms in an extensional set theory where quantification occurs only over set variables.

Eliminability of class variables using the $a-statements ax-ext 2590, df-clab 2597, df-cleq 2603, df-clel 2606 is an easy result, proved for instance in Appendix X of Azriel Levy, Basic Set Theory, Dover Publications, 2002. Note that viewed from the set.mm axiomatization, it is a metatheorem not formalizable is set.mm. It states: every formula in the language of FOL + + class terms, but without class variables, is provably equivalent (over {FOL, ax-ext 2590, df-clab 2597, df-cleq 2603, df-clel 2606 }) to a formula in the language of FOL + (that is, without class terms).

The proof goes by induction on the complexity of the formula (see op. cit. for details). The base case is that of atomic formulas. The atomic formulas containing class terms are of one of the following forms: for equality, 𝑥 = {𝑦𝜑}, {𝑥𝜑} = 𝑦, {𝑥𝜑} = {𝑦𝜓}, and for membership, 𝑦 ∈ {𝑥𝜑}, {𝑥𝜑} ∈ 𝑦, {𝑥𝜑} ∈ {𝑦𝜓}. These cases are dealt with by eliminable1 32033 and the following theorems of this section, which are special instances of df-clab 2597, dfcleq 2604 (proved from {FOL, ax-ext 2590, df-cleq 2603 }), and df-clel 2606. Indeed, denote by (i) the formula proved by "eliminablei". One sees that the RHS of (1) has no class terms, the RHS's of (2x) have only class terms of the form dealt with by (1), and the RHS's of (3x) have only class terms of the forms dealt with by (1) and (2a). Note that in order to prove eliminable2a 32034, eliminable2b 32035 and eliminable3a 32037, we need to substitute a class variable for a setvar variable. This is possible because setvars are class terms: this is the content of the syntactic theorem cv 1474, which is used in these proofs (this does not appear in the html pages but it is in the set.mm file and you can check it using the Metamath program).

The induction step relies on the fact that any formula is a FOL-combination of atomic formulas, so if one found equivalents for all atomic formulas constituting the formula, then the same FOL-combination of these equivalents will be equivalent to the original formula.

Note that one has a slightly more precise result: if the original formula has only class terms appearing in atomic formulas of the form 𝑦 ∈ {𝑥𝜑}, then df-clab 2597 is sufficient (over FOL) to eliminate class terms, and if the original formula has only class terms appearing in atomic formulas of the form 𝑦 ∈ {𝑥𝜑} and equalities, then df-clab 2597, ax-ext 2590 and df-cleq 2603 are sufficient (over FOL) to eliminate class terms.

To prove that { df-clab 2597, df-cleq 2603, df-clel 2606 } provides a definitional extension of {FOL, ax-ext 2590 }, one needs to prove the above Eliminability Theorem, which compares the expressive powers of the languages with and without class terms, and the Conservativity Theorem, which compares the deductive powers when one adds { df-clab 2597, df-cleq 2603, df-clel 2606 }. It states that a formula without class terms is provable in one axiom system if and only if it is provable in the other, and that this remains true when one adds further definitions to {FOL, ax-ext 2590 }. It is also proved in op. cit. The proof is more difficult, since one has to construct for each proof of a statement without class terms, an associated proof not using { df-clab 2597, df-cleq 2603, df-clel 2606 }. It involves a careful case study on the structure of the proof tree.

 
Theoremeliminable1 32033 A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
 
Theoremeliminable2a 32034* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = {𝑦𝜑} ↔ ∀𝑧(𝑧𝑥𝑧 ∈ {𝑦𝜑}))
 
Theoremeliminable2b 32035* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} = 𝑦 ↔ ∀𝑧(𝑧 ∈ {𝑥𝜑} ↔ 𝑧𝑦))
 
Theoremeliminable2c 32036* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} = {𝑦𝜓} ↔ ∀𝑧(𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜓}))
 
Theoremeliminable3a 32037* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} ∈ 𝑦 ↔ ∃𝑧(𝑧 = {𝑥𝜑} ∧ 𝑧𝑦))
 
Theoremeliminable3b 32038* A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
({𝑥𝜑} ∈ {𝑦𝜓} ↔ ∃𝑧(𝑧 = {𝑥𝜑} ∧ 𝑧 ∈ {𝑦𝜓}))
 
Theorembj-termab 32039* Every class can be written as (is equal to) a class abstraction. cvjust 2605 is a special instance of it, but the present proof does not require ax-13 2234, contrary to cvjust 2605. This theorem requires ax-ext 2590, df-clab 2597, df-cleq 2603, df-clel 2606, but to prove that any specific class term not containing class variables is a setvar or can be written as (is equal to) a class abstraction does not require these $a-statements. This last fact is a metatheorem, consequence of the fact that the only $a-statements with typecode class are cv 1474, cab 2596 and statements corresponding to defined class constructors.

UPDATE: This theorem is (almost) abid2 2732 and bj-abid2 31970, though the present proof is shorter than a proof from bj-abid2 31970 and eqcomi 2619 (and is shorter than the proof of either); plus, it is of the same form as cvjust 2605 and such a basic statement deserves to be present in both forms. Note that bj-termab 32039 shortens the proof of abid2 2732, and shortens five proofs by a total of 72 bytes. Move it to Main as "abid1" proved from abbi2i 2725? Note also that this is the form in Quine, more than abid2 2732. (Contributed by BJ, 21-Oct-2019.) (Proof modification is discouraged.)

𝐴 = {𝑥𝑥𝐴}
 
21.14.5.2  Classes without extensionality

A few results about classes can be proved without using ax-ext 2590. One could move all theorems from cab 2596 to df-clel 2606 (except for dfcleq 2604 and cvjust 2605) in a subsection "Classes" before the subsection on the axiom of extensionality, together with the theorems below. In that subsection, the last statement should be df-cleq 2603.

Note that without ax-ext 2590, the $a-statements df-clab 2597, df-cleq 2603, and df-clel 2606 are no longer eliminable (see previous section) (but PROBABLY are still conservative). This is not a reason not to study what is provable with them but without ax-ext 2590, in order to gauge their strengths more precisely.

Before that subsection, a subsection "The membership predicate" could group the statements with that are currently in the FOL part (including wcel 1977, wel 1978, ax-8 1979, ax-9 1986).

 
Theorembj-eleq1w 32040 Weaker version of eleq1 2676 (but more general than elequ1 1984) not depending on ax-ext 2590 (nor ax-12 2034 nor df-cleq 2603). Remark: this can also be done with eleq1i 2679, eqeltri 2684, eqeltrri 2685, eleq1a 2683, eleq1d 2672, eqeltrd 2688, eqeltrrd 2689, eqneltrd 2707, eqneltrrd 2708, nelneq 2712. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
(𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
 
Theorembj-eleq2w 32041 Weaker version of eleq2 2677 (but more general than elequ2 1991) not depending on ax-ext 2590 (nor ax-12 2034 nor df-cleq 2603). (Contributed by BJ, 29-Sep-2019.) (Proof modification is discouraged.)
(𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
 
Theorembj-clelsb3 32042* Remove dependency on ax-ext 2590 (and df-cleq 2603) from clelsb3 2716. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
([𝑥 / 𝑦]𝑦𝐴𝑥𝐴)
 
Theorembj-hblem 32043* Remove dependency on ax-ext 2590 (and df-cleq 2603) from hblem 2718. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
(𝑦𝐴 → ∀𝑥 𝑦𝐴)       (𝑧𝐴 → ∀𝑥 𝑧𝐴)
 
Theorembj-nfcjust 32044* Remove dependency on ax-ext 2590 (and df-cleq 2603 and ax-13 2234) from nfcjust 2739. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
(∀𝑦𝑥 𝑦𝐴 ↔ ∀𝑧𝑥 𝑧𝐴)
 
Theorembj-nfcrii 32045* Remove dependency on ax-ext 2590 (and df-cleq 2603) from nfcrii 2744. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
𝑥𝐴       (𝑦𝐴 → ∀𝑥 𝑦𝐴)
 
Theorembj-nfcri 32046* Remove dependency on ax-ext 2590 (and df-cleq 2603) from nfcri 2745. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
𝑥𝐴       𝑥 𝑦𝐴
 
Theorembj-nfnfc 32047 Remove dependency on ax-ext 2590 (and df-cleq 2603) from nfnfc 2760. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
𝑥𝐴       𝑥𝑦𝐴
 
Theorembj-vexwt 32048 Closed form of bj-vexw 32049. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) Use bj-vexwvt 32050 instead when sufficient. (New usage is discouraged.)
(∀𝑥𝜑𝑦 ∈ {𝑥𝜑})
 
Theorembj-vexw 32049 If 𝜑 is a theorem, then any set belongs to the class {𝑥𝜑}. Therefore, {𝑥𝜑} is "a" universal class.

This is the closest one can get to defining a universal class, or proving vex 3176, without using ax-ext 2590. Note that this theorem has no dv condition and does not use df-clel 2606 nor df-cleq 2603 either: only first-order logic and df-clab 2597.

Without ax-ext 2590, one cannot define "the" universal class, since one could not prove for instance the justification theorem {𝑥 ∣ ⊤} = {𝑦 ∣ ⊤} (see vjust 3174). Indeed, in order to prove any equality of classes, one needs df-cleq 2603, which has ax-ext 2590 as a hypothesis. Therefore, the classes {𝑥 ∣ ⊤}, {𝑦 ∣ (𝜑𝜑)}, {𝑧 ∣ (∀𝑡𝑡 = 𝑡 → ∀𝑡𝑡 = 𝑡)} and countless others are all universal classes whose equality one cannot prove without ax-ext 2590. See also bj-issetw 32054.

A version with a dv condition between 𝑥 and 𝑦 and not requiring ax-13 2234 is proved as bj-vexwv 32051, while the degenerate instance is a simple consequence of abid 2598. (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.) Use bj-vexwv 32051 instead when sufficient. (New usage is discouraged.)

𝜑       𝑦 ∈ {𝑥𝜑}
 
Theorembj-vexwvt 32050* Closed form of bj-vexwv 32051 and version of bj-vexwt 32048 with a dv condition, which does not require ax-13 2234. (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.)
(∀𝑥𝜑𝑦 ∈ {𝑥𝜑})
 
Theorembj-vexwv 32051* Version of bj-vexw 32049 with a dv condition, which does not require ax-13 2234. The degenerate instance of bj-vexw 32049 is a simple consequence of abid 2598 (which does not depend on ax-13 2234 either). (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.)
𝜑       𝑦 ∈ {𝑥𝜑}
 
Theorembj-denotes 32052* This would be the justification for the definition of the unary predicate "E!" by ( E! 𝐴 ↔ ∃𝑥𝑥 = 𝐴) which could be interpreted as "𝐴 exists" or "𝐴 denotes". It is interesting that this justification can be proved without ax-ext 2590 nor df-cleq 2603 (but of course using df-clab 2597 and df-clel 2606). Once extensionality is postulated, then isset 3180 will prove that "existing" (as a set) is equivalent to being a member of a class.

Note that there is no dv condition on 𝑥, 𝑦 but the theorem does not depend on ax-13 2234. Actually, the proof depends only on ax-1--7 and sp 2041.

The symbol "E!" was chosen to be reminiscent of the analogous predicate in (inclusive or non-inclusive) free logic, which deals with the possibility of non-existent objects. This analogy should not be taken too far, since here there are no equality axioms for classes: they are derived from ax-ext 2590 (e.g., eqid 2610). In particular, one cannot even prove 𝑥𝑥 = 𝐴𝐴 = 𝐴.

With ax-ext 2590, the present theorem is obvious from cbvexv 2263 and eqeq1 2614 (in free logic, the same proof holds since one has equality axioms for terms). (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.)

(∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)
 
Theorembj-issetwt 32053* Closed form of bj-issetw 32054. (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.)
(∀𝑥𝜑 → (𝐴 ∈ {𝑥𝜑} ↔ ∃𝑦 𝑦 = 𝐴))
 
Theorembj-issetw 32054* The closest one can get to isset 3180 without using ax-ext 2590. See also bj-vexw 32049. Note that the only dv condition is between 𝑦 and 𝐴. (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.)
𝜑       (𝐴 ∈ {𝑥𝜑} ↔ ∃𝑦 𝑦 = 𝐴)
 
Theorembj-elissetv 32055* Version of bj-elisset 32056 with a dv condition on 𝑥, 𝑉. This proof uses only df-ex 1696, ax-gen 1713, ax-4 1728 and df-clel 2606 on top of propositional calculus. Prefer its use over bj-elisset 32056 when sufficient. (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
(𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
 
Theorembj-elisset 32056* Remove from elisset 3188 dependency on ax-ext 2590 (and on df-cleq 2603 and df-v 3175). This proof uses only df-clab 2597 and df-clel 2606 on top of first-order logic. It only requires ax-1--7 and sp 2041. Use bj-elissetv 32055 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.)
(𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
 
Theorembj-issetiv 32057* Version of bj-isseti 32058 with a dv condition on 𝑥, 𝑉. This proof uses only df-ex 1696, ax-gen 1713, ax-4 1728 and df-clel 2606 on top of propositional calculus. Prefer its use over bj-isseti 32058 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
𝐴𝑉       𝑥 𝑥 = 𝐴
 
Theorembj-isseti 32058* Remove from isseti 3182 dependency on ax-ext 2590 (and on df-cleq 2603 and df-v 3175). This proof uses only df-clab 2597 and df-clel 2606 on top of first-order logic. It only uses ax-12 2034 among the auxiliary logical axioms. The hypothesis uses 𝑉 instead of V for extra generality. This is indeed more general as long as elex 3185 is not available. Use bj-issetiv 32057 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.)
𝐴𝑉       𝑥 𝑥 = 𝐴
 
Theorembj-ralvw 32059 A weak version of ralv 3192 not using ax-ext 2590 (nor df-cleq 2603, df-clel 2606, df-v 3175), but using ax-13 2234. For the sake of illustration, the next theorem bj-rexvwv 32060, a weak version of rexv 3193, has a dv condition and avoids dependency on ax-13 2234, while the analogues for reuv 3194 and rmov 3195 are not proved. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝜓       (∀𝑥 ∈ {𝑦𝜓}𝜑 ↔ ∀𝑥𝜑)
 
Theorembj-rexvwv 32060* A weak version of rexv 3193 not using ax-ext 2590 (nor df-cleq 2603, df-clel 2606, df-v 3175) with an additional dv condition to avoid dependency on ax-13 2234 as well. See bj-ralvw 32059. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝜓       (∃𝑥 ∈ {𝑦𝜓}𝜑 ↔ ∃𝑥𝜑)
 
Theorembj-rababwv 32061* A weak version of rabab 3196 not using df-clel 2606 nor df-v 3175 (but requiring ax-ext 2590). A version without dv condition is provable by replacing bj-vexwv 32051 with bj-vexw 32049 in the proof, hence requiring ax-13 2234. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝜓       {𝑥 ∈ {𝑦𝜓} ∣ 𝜑} = {𝑥𝜑}
 
Theorembj-ralcom4 32062* Remove from ralcom4 3197 dependency on ax-ext 2590 and ax-13 2234 (and on df-or 384, df-an 385, df-tru 1478, df-sb 1868, df-clab 2597, df-cleq 2603, df-clel 2606, df-nfc 2740, df-v 3175). This proof uses only df-ral 2901 on top of first-order logic. (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.)
(∀𝑥𝐴𝑦𝜑 ↔ ∀𝑦𝑥𝐴 𝜑)
 
Theorembj-rexcom4 32063* Remove from rexcom4 3198 dependency on ax-ext 2590 and ax-13 2234 (and on df-or 384, df-tru 1478, df-sb 1868, df-clab 2597, df-cleq 2603, df-clel 2606, df-nfc 2740, df-v 3175). This proof uses only df-rex 2902 on top of first-order logic. (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.)
(∃𝑥𝐴𝑦𝜑 ↔ ∃𝑦𝑥𝐴 𝜑)
 
Theorembj-rexcom4a 32064* Remove from rexcom4a 3199 dependency on ax-ext 2590 and ax-13 2234 (and on df-or 384, df-sb 1868, df-clab 2597, df-cleq 2603, df-clel 2606, df-nfc 2740, df-v 3175). This proof uses only df-rex 2902 on top of first-order logic. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
(∃𝑥𝑦𝐴 (𝜑𝜓) ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥𝜓))
 
Theorembj-rexcom4bv 32065* Version of bj-rexcom4b 32066 with a dv condition on 𝑥, 𝑉, hence removing dependency on df-sb 1868 and df-clab 2597 (so that it depends on df-clel 2606 and df-rex 2902 only on top of first-order logic). Prefer its use over bj-rexcom4b 32066 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 14-Sep-2019.) (Proof modification is discouraged.)
𝐵𝑉       (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
 
Theorembj-rexcom4b 32066* Remove from rexcom4b 3200 dependency on ax-ext 2590 and ax-13 2234 (and on df-or 384, df-cleq 2603, df-nfc 2740, df-v 3175). The hypothesis uses 𝑉 instead of V (see bj-isseti 32058 for the motivation). Use bj-rexcom4bv 32065 instead when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
𝐵𝑉       (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
 
Theorembj-ceqsalt0 32067 The FOL content of ceqsalt 3201. Lemma for bj-ceqsalt 32069 and bj-ceqsaltv 32070. (Contributed by BJ, 26-Sep-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜃 → (𝜑𝜓)) ∧ ∃𝑥𝜃) → (∀𝑥(𝜃𝜑) ↔ 𝜓))
 
Theorembj-ceqsalt1 32068 The FOL content of ceqsalt 3201. Lemma for bj-ceqsalt 32069 and bj-ceqsaltv 32070. (TODO: consider removing if it does not add anything to bj-ceqsalt0 32067.) (Contributed by BJ, 26-Sep-2019.) (Proof modification is discouraged.)
(𝜃 → ∃𝑥𝜒)       ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝜒 → (𝜑𝜓)) ∧ 𝜃) → (∀𝑥(𝜒𝜑) ↔ 𝜓))
 
Theorembj-ceqsalt 32069* Remove from ceqsalt 3201 dependency on ax-ext 2590 (and on df-cleq 2603 and df-v 3175). Note: this is not doable with ceqsralt 3202 (or ceqsralv 3207), which uses eleq1 2676, but the same dependence removal is possible for ceqsalg 3203, ceqsal 3205, ceqsalv 3206, cgsexg 3211, cgsex2g 3212, cgsex4g 3213, ceqsex 3214, ceqsexv 3215, ceqsex2 3217, ceqsex2v 3218, ceqsex3v 3219, ceqsex4v 3220, ceqsex6v 3221, ceqsex8v 3222, gencbvex 3223 (after changing 𝐴 = 𝑦 to 𝑦 = 𝐴), gencbvex2 3224, gencbval 3225, vtoclgft 3227 (it uses , whose justification nfcjust 2739 is actually provable without ax-ext 2590, as bj-nfcjust 32044 shows) and several other vtocl* theorems (see for instance bj-vtoclg1f 32103). See also bj-ceqsaltv 32070. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsaltv 32070* Version of bj-ceqsalt 32069 with a dv condition on 𝑥, 𝑉, removing dependency on df-sb 1868 and df-clab 2597. Prefer its use over bj-ceqsalt 32069 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalg0 32071 The FOL content of ceqsalg 3203. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝜒 → (𝜑𝜓))       (∃𝑥𝜒 → (∀𝑥(𝜒𝜑) ↔ 𝜓))
 
Theorembj-ceqsalg 32072* Remove from ceqsalg 3203 dependency on ax-ext 2590 (and on df-cleq 2603 and df-v 3175). See also bj-ceqsalgv 32074. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalgALT 32073* Alternate proof of bj-ceqsalg 32072. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalgv 32074* Version of bj-ceqsalg 32072 with a dv condition on 𝑥, 𝑉, removing dependency on df-sb 1868 and df-clab 2597. Prefer its use over bj-ceqsalg 32072 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsalgvALT 32075* Alternate proof of bj-ceqsalgv 32074. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
 
Theorembj-ceqsal 32076* Remove from ceqsal 3205 dependency on ax-ext 2590 (and on df-cleq 2603, df-v 3175, df-clab 2597, df-sb 1868). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theorembj-ceqsalv 32077* Remove from ceqsalv 3206 dependency on ax-ext 2590 (and on df-cleq 2603, df-v 3175, df-clab 2597, df-sb 1868). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
 
Theorembj-spcimdv 32078* Remove from spcimdv 3263 dependency on ax-10 2006, ax-11 2021, ax-13 2234, ax-ext 2590, df-cleq 2603 (and df-nfc 2740, df-v 3175, df-tru 1478, df-nf 1701). (Contributed by BJ, 30-Nov-2020.) (Proof modification is discouraged.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓𝜒))
 
21.14.5.3  The class-form not-free predicate

In this section, we prove the symmetry of the class-form not-free predicate.

 
Theorembj-nfcsym 32079 The class-form not-free predicate defines a symmetric binary relation on var metavariables (irreflexivity is proved by nfnid 4823 with additional axioms; see also nfcv 2751). This could be proved from aecom 2299 and nfcvb 4824 but the latter requires a domain with at least two objects (hence uses extra axioms). (Contributed by BJ, 30-Sep-2018.) Proof modification is discouraged to avoid use of eqcomd 2616 instead of equcomd 1933; removing dependency on ax-ext 2590 is possible: prove weak versions (i.e. replace classes with setvars) of drnfc1 2768, eleq2d 2673 (using elequ2 1991), nfcvf 2774, dvelimc 2773, dvelimdc 2772, nfcvf2 2775. (Proof modification is discouraged.)
(𝑥𝑦𝑦𝑥)
 
21.14.5.4  Proposal for the definitions of class membership and class equality

In this section, we show (bj-ax8 32080 and bj-ax9 32083) that the current forms of the definitions of class membership (df-clel 2606) and class equality (df-cleq 2603) are too powerful, and we propose alternate definitions (bj-df-clel 32081 and bj-df-cleq 32085) which also have the advantage of making it clear that these definitions are conservative.

 
Theorembj-ax8 32080 Proof of ax-8 1979 from df-clel 2606 (and FOL). This shows that df-clel 2606 is "too powerful". A possible definition is given by bj-df-clel 32081. (Contributed by BJ, 27-Jun-2019.) Also a direct consequence of bj-eleq1w 32040, which has essentially the same proof. (Proof modification is discouraged.)
(𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
 
Theorembj-df-clel 32081* Candidate definition for df-clel 2606 (the need for it is exposed in bj-ax8 32080). The similarity of the hypothesis and the conclusion, together with all possible dv conditions, makes it clear that this definition merely extends to class variables something that is true for setvar variables, hence is conservative. This definition should be directly referenced only by bj-dfclel 32082, which should be used instead. The proof is irrelevant since this is a proposal for an axiom.

Note: the current definition df-clel 2606 already mentions cleljust 1985 as a justification; here, we merely propose to put it as a hypothesis to make things clearer. (Contributed by BJ, 27-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)

(𝑢𝑣 ↔ ∃𝑤(𝑤 = 𝑢𝑤𝑣))       (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
 
Theorembj-dfclel 32082* Characterization of the elements of a class. Note: cleljust 1985 could be relabeled as clelhyp. (Contributed by BJ, 27-Jun-2019.) (Proof modification is discouraged.)
(𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
 
Theorembj-ax9 32083* Proof of ax-9 1986 from ax-ext 2590 and df-cleq 2603 (and FOL) (with two extra dv conditions on 𝑥, 𝑧 and 𝑦, 𝑧). This shows that df-cleq 2603 is "too powerful". A possible definition is given by bj-df-cleq 32085. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
(𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
 
Theorembj-cleqhyp 32084* The hypothesis of bj-df-cleq 32085. Note that the hypothesis of bj-df-cleq 32085 actually has an additional dv condition on 𝑥, 𝑦 and therefore is provable by simply using ax-ext 2590 in place of axext3 2592 in the current proof. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
(𝑥 = 𝑦 ↔ ∀𝑧(𝑧𝑥𝑧𝑦))
 
Theorembj-df-cleq 32085* Candidate definition for df-cleq 2603 (the need for it is exposed in bj-ax9 32083). The similarity of the hypothesis and the conclusion makes it clear that this definition merely extends to class variables something that is true for setvar variables, hence is conservative. This definition should be directly referenced only by bj-dfcleq 32086, which should be used instead. The proof is irrelevant since this is a proposal for an axiom.

Another definition, which would give finer control, is actually the pair of definitions where each has one implication of the present biconditional as hypothesis and conclusion. They assert that extensionality (respectively, the left-substitution axiom for the membership predicate) extends from setvars to classes. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)

(𝑢 = 𝑣 ↔ ∀𝑤(𝑤𝑢𝑤𝑣))       (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 
Theorembj-dfcleq 32086* Proof of class extensionality from the axiom of set extensionality (ax-ext 2590) and the definition of class equality (bj-df-cleq 32085). (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
(𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 
21.14.5.5  Lemmas for class substitution

Some useful theorems for dealing with substitutions: sbbi 2389, sbcbig 3447, sbcel1g 3939, sbcel2 3941, sbcel12 3935, sbceqg 3936, csbvarg 3955.

 
Theorembj-sbeqALT 32087* Substitution in an equality (use the more genereal version bj-sbeq 32088 instead, without disjoint variable condition). (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
([𝑦 / 𝑥]𝐴 = 𝐵𝑦 / 𝑥𝐴 = 𝑦 / 𝑥𝐵)
 
Theorembj-sbeq 32088 Distribute proper substitution through an equality relation. (See sbceqg 3936). (Contributed by BJ, 6-Oct-2018.)
([𝑦 / 𝑥]𝐴 = 𝐵𝑦 / 𝑥𝐴 = 𝑦 / 𝑥𝐵)
 
Theorembj-sbceqgALT 32089 Distribute proper substitution through an equality relation. Alternate proof of sbceqg 3936. (Contributed by BJ, 6-Oct-2018.) Proof modification is discouraged to avoid using sbceqg 3936, but "minimize */except sbceqg" is ok. (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
 
Theorembj-csbsnlem 32090* Lemma for bj-csbsn 32091 (in this lemma, 𝑥 cannot occur in 𝐴). (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.)
𝐴 / 𝑥{𝑥} = {𝐴}
 
Theorembj-csbsn 32091 Substitution in a singleton. (Contributed by BJ, 6-Oct-2018.)
𝐴 / 𝑥{𝑥} = {𝐴}
 
Theorembj-sbel1 32092* Version of sbcel1g 3939 when substituting a set. (Note: one could have a corresponding version of sbcel12 3935 when substituting a set, but the point here is that the antecedent of sbcel1g 3939 is not needed when substituting a set.) (Contributed by BJ, 6-Oct-2018.)
([𝑦 / 𝑥]𝐴𝐵𝑦 / 𝑥𝐴𝐵)
 
Theorembj-abv 32093 The class of sets verifying a tautology is the universal class. (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
(∀𝑥𝜑 → {𝑥𝜑} = V)
 
Theorembj-ab0 32094 The class of sets verifying a falsity is the empty set (closed form of abf 3930). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
(∀𝑥 ¬ 𝜑 → {𝑥𝜑} = ∅)
 
Theorembj-abf 32095 Shorter proof of abf 3930 (which should be kept as abfALT). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
¬ 𝜑       {𝑥𝜑} = ∅
 
Theorembj-csbprc 32096 More direct proof of csbprc 3932 (fewer essential steps). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
 
21.14.5.6  Removing some dv conditions
 
Theorembj-exlimmpi 32097 Lemma for bj-vtoclg1f1 32102 (an instance of this lemma is a version of bj-vtoclg1f1 32102 where 𝑥 and 𝑦 are identified). (Contributed by BJ, 30-Apr-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝜒 → (𝜑𝜓))    &   𝜑       (∃𝑥𝜒𝜓)
 
Theorembj-exlimmpbi 32098 Lemma for theorems of the vtoclg 3239 family. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   (𝜒 → (𝜑𝜓))    &   𝜑       (∃𝑥𝜒𝜓)
 
Theorembj-exlimmpbir 32099 Lemma for theorems of the vtoclg 3239 family. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜑    &   (𝜒 → (𝜑𝜓))    &   𝜓       (∃𝑥𝜒𝜑)
 
Theorembj-vtoclf 32100* Remove dependency on ax-ext 2590, df-clab 2597 and df-cleq 2603 (and df-sb 1868 and df-v 3175) from vtoclf 3231. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.)
𝑥𝜓    &   𝐴𝑉    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   𝜑       𝜓
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42360
  Copyright terms: Public domain < Previous  Next >