Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axext3 | Structured version Visualization version GIF version |
Description: A generalization of the Axiom of Extensionality in which 𝑥 and 𝑦 need not be distinct. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) Remove dependencies on ax-10 2006, ax-12 2034, ax-13 2234. (Revised by Wolf Lammen, 9-Dec-2019.) |
Ref | Expression |
---|---|
axext3 | ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 1991 | . . . . . 6 ⊢ (𝑤 = 𝑥 → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑥)) | |
2 | 1 | bibi1d 332 | . . . . 5 ⊢ (𝑤 = 𝑥 → ((𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦) ↔ (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) |
3 | 2 | albidv 1836 | . . . 4 ⊢ (𝑤 = 𝑥 → (∀𝑧(𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦) ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) |
4 | ax-ext 2590 | . . . 4 ⊢ (∀𝑧(𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦) → 𝑤 = 𝑦) | |
5 | 3, 4 | syl6bir 243 | . . 3 ⊢ (𝑤 = 𝑥 → (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑤 = 𝑦)) |
6 | ax7 1930 | . . 3 ⊢ (𝑤 = 𝑥 → (𝑤 = 𝑦 → 𝑥 = 𝑦)) | |
7 | 5, 6 | syld 46 | . 2 ⊢ (𝑤 = 𝑥 → (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦)) |
8 | ax6ev 1877 | . 2 ⊢ ∃𝑤 𝑤 = 𝑥 | |
9 | 7, 8 | exlimiiv 1846 | 1 ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 |
This theorem is referenced by: axext4 2594 axextnd 9292 axextdist 30949 bj-cleqhyp 32084 |
Copyright terms: Public domain | W3C validator |