Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfnid | Structured version Visualization version GIF version |
Description: A setvar variable is not free from itself. The proof relies on dtru 4783, that is, it is not true in a one-element domain. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
nfnid | ⊢ ¬ Ⅎ𝑥𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dtru 4783 | . . 3 ⊢ ¬ ∀𝑧 𝑧 = 𝑤 | |
2 | ax-ext 2590 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤) → 𝑧 = 𝑤) | |
3 | 2 | sps 2043 | . . . 4 ⊢ (∀𝑤∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤) → 𝑧 = 𝑤) |
4 | 3 | alimi 1730 | . . 3 ⊢ (∀𝑧∀𝑤∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤) → ∀𝑧 𝑧 = 𝑤) |
5 | 1, 4 | mto 187 | . 2 ⊢ ¬ ∀𝑧∀𝑤∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤) |
6 | df-nfc 2740 | . . 3 ⊢ (Ⅎ𝑥𝑥 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝑥) | |
7 | sbnf2 2427 | . . . . 5 ⊢ (Ⅎ𝑥 𝑦 ∈ 𝑥 ↔ ∀𝑧∀𝑤([𝑧 / 𝑥]𝑦 ∈ 𝑥 ↔ [𝑤 / 𝑥]𝑦 ∈ 𝑥)) | |
8 | elsb4 2423 | . . . . . . 7 ⊢ ([𝑧 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧) | |
9 | elsb4 2423 | . . . . . . 7 ⊢ ([𝑤 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑤) | |
10 | 8, 9 | bibi12i 328 | . . . . . 6 ⊢ (([𝑧 / 𝑥]𝑦 ∈ 𝑥 ↔ [𝑤 / 𝑥]𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) |
11 | 10 | 2albii 1738 | . . . . 5 ⊢ (∀𝑧∀𝑤([𝑧 / 𝑥]𝑦 ∈ 𝑥 ↔ [𝑤 / 𝑥]𝑦 ∈ 𝑥) ↔ ∀𝑧∀𝑤(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) |
12 | 7, 11 | bitri 263 | . . . 4 ⊢ (Ⅎ𝑥 𝑦 ∈ 𝑥 ↔ ∀𝑧∀𝑤(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) |
13 | 12 | albii 1737 | . . 3 ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝑥 ↔ ∀𝑦∀𝑧∀𝑤(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) |
14 | alrot3 2025 | . . 3 ⊢ (∀𝑦∀𝑧∀𝑤(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤) ↔ ∀𝑧∀𝑤∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) | |
15 | 6, 13, 14 | 3bitri 285 | . 2 ⊢ (Ⅎ𝑥𝑥 ↔ ∀𝑧∀𝑤∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤)) |
16 | 5, 15 | mtbir 312 | 1 ⊢ ¬ Ⅎ𝑥𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 195 ∀wal 1473 Ⅎwnf 1699 [wsb 1867 Ⅎwnfc 2738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-nul 4717 ax-pow 4769 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-nfc 2740 |
This theorem is referenced by: nfcvb 4824 |
Copyright terms: Public domain | W3C validator |