Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ceqsal | Structured version Visualization version GIF version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
ceqsal.1 | ⊢ Ⅎ𝑥𝜓 |
ceqsal.2 | ⊢ 𝐴 ∈ V |
ceqsal.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsal | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsal.2 | . 2 ⊢ 𝐴 ∈ V | |
2 | ceqsal.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | ceqsal.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | ceqsalg 3203 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 = wceq 1475 Ⅎwnf 1699 ∈ wcel 1977 Vcvv 3173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-v 3175 |
This theorem is referenced by: ceqsalv 3206 aomclem6 36647 |
Copyright terms: Public domain | W3C validator |